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Introduction

Cysteine is formed from sulfide and O-acetylserine
via the enzyme O-acetyl serine (thiol) lyase1.
Cysteine is incorporated into proteins and
glutathione, and serves as a sulfur donor for the
synthesis of sulfur containing compound such as
methionine. Like bacteria and fungi, plants have a
trans-sulfuration pathway, mediated by
cystathionine γ-synthase and cystathionine β-lyase
that converts cysteine to homo cysteine via
cystathionine, the homocysteine then being used to
make methionine (Fig.1). Methionine is a protein
constituent and the precursor of S-adenosyl
methionine (SAM), the universal methyl donor, and
of S-methyl methionine (SMM), a major form of
sulfur transport in some plants2 .

Sulfur is an essential element in all living
organisms. Bacteria and plants incorporate sulfur as

inorganic compounds such as sulfate, sulfite, and
sulfide. In contrast, most of heterotrophs take in
sulfur as sulfur-containing amino acids (SAAs)
synthesized by other organisms. SAAs play critical
roles in a variety of biological processes including
protein synthesis, methylation, biosynthesis of
vitamins, polyamines and antioxidants. SAAs are
ubiquitously distributed, but their metabolic
pathways diverged among organisms, and are
modulated in the life cycle and upon stresses and
changes in environmental conditions3.

Both biosynthesis and degradation of SAAs (Fig. 2)
must be tightly regulated. The maintenance of low
homocysteine concentrations is essential not only
for proper flow of sulfur in the transsulfuration
pathway and the methionine cycle, but also for
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Abstract

L-Methionine γ-lyase (EC 4.4.1.11; MGL), also known as methionase, is a pyridoxal phosphate (PLP)-dependent
enzyme that catalyzes the direct conversion of L-methionine to a ketobutyrate, methanethiol, and ammonia by an α,γ-
elimination reaction.  The enzyme also catalyzes the β-replacement reactions of sulfur amino acids. MGL is widely
distributed in bacteria, especially in pseudomonads. Many cancer cells have an absolute requirement for plasma
methionine, whereas normal cells are relatively resistant to the restriction of exogenous methionine. Methionine
depletion has a broad spectrum of antitumor activities. Under methionine depletion, cancer cells were arrested in the late
S-G2 phase due to the pleiotropic effects and underwent apoptosis. Thus, therapeutic exploitation of MGL to deplete
plasma methionine has been extensively investigated. Growth of various tumors such as Lewis lung carcinoma, human
colon cancer lines, glioblastoma, neuro-blastoma and other types of cancer was arrested by MGL.
.
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Fig.1: Scheme showing methionine/ cysteine interconversion pathways

evading toxic effects of the molecule, which has
been implicated in pathological conditions
associated with various genetic disorders causing
homocystinuria and homocysteinemia4.
Homocysteine has also been shown to be the pro-
oxidant causing damage to the vascular
endothelia5, and associated with an increased
cardiovascular risk6 and Alzheimer’s disease7.

In mammals, SAAs are mainly degraded via
oxidative cysteine catabolism, where cysteine
dioxygenase (EC. 1. 13. 11. 20) catalyzes the
oxygenation of cysteine to 3-sulfinoalanine, a key
intermediate of cysteine metabolism leading to
hypotaurine, taurine, pyruvate, and sulfate8. The
other cysteine degradative pathway in mammals is
initiated by cysteine aminotransferase (EC. 2. 6. 1.
3), which deaminates cysteine to form 3-mercapto-
pyruvate. In the organisms that possess a
methionine biosynthetic pathway, such as bacteria
and plants, cystine (a pair of cysteines joined by a
disulfide bond) is also degraded at least in vitro by
cystathionine β-lyase (EC. 4. 4. 1. 8) to thiocysteine,
pyruvate, and ammonia9, 10. On the other hand, a
limited lineage of organisms possesses the unique
pathway, in which SAAs are converted to α-keto
acids, ammonia, and volatile thiols by methionine
gamma-lyase (MGL, EC. 4. 4. 1. 11).

It was reported 70 years ago that some bacteria
produced methanethiol11, MGL has been
characterized from bacteria, including Clostridium

porogenes12, Pseudomonas ovalis13, Pseudomonas
putida14, Aeromonas sp.15, Citrobacter
intermedius16, Brevibacterium linens17, Citrobacter
freundii18, Porphyromonas gingivalis19 and
Treponema denticola20, parasitic protozoa such as
Trichomonas vaginalis21, Entamoeba histolytica22

and a model plant Arabidopsis thaliana23. MGL
activity was also detected from archaeon
Ferroplasma acidarmanus24, cheese surface
bacteria such as Micrococcus luteus, Arthrobacter
sp., Corynebacterium glutamicum and
Staphylococcus equorum25. Crystal structures have
been reported from Pseudomonas putida26,
Citrobacter freundii27, 28, Trichomonas vaginalis and
Entamoeba histolytica29, 30.

Enzymological properties

Basic Reactions, Size, and Cofactor

MGL catalyzes the α,γ-elimination of L-methionine
and its derivatives such as L-homocysteine, L-
ethionine, and L-seleno- methionine (Fig. 3). It also
catalyzes the α,βelimination of L-cysteine and its
analogs such as S-methyl-L-cysteine31. These
reactions yield α-keto acid (2-oxobutyrate and
pyruvate), ammonia, and thiols (methanethiol and
hydrogen sulfide). It also degrades O-substituted
serine or homoserine such as O-acetyl-L-serine, O-
acetyl-L-homoserine, and O-succinyl-L-homoserine,
and release organic acids instead of thiols. This



PHARMACEUTICAL SCIENCES Int.J.Curr.Res.Chem.Pharma.Sci.1(5):74-83

© 2014, IJCRCPS. All Rights Reserved 76

Fig.2: A general scheme of transsulfuration, methionine cycle, and sulfur-containing amino acid degradation

The enzymes involved in sulfur-containing amino acid degradation are MGL, methionine gamma-lyase; CDO,
cysteine dioxygenase; CAT, cysteine aminotransferase

Fig.3: Catalytic reactions of MGL

α, γ-elimination and γ-replacement of L-methionine (upper) and α, β-elimination and β-replacement of L-
cysteine (lower) are indicated. X ¼S or Se

Figure 4.Crystal structure of MGL

A. The overall structure of E. histolytica MGL2
B. Single subunit of E. histolytica MGL2
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enzyme alternatively catalyzes β- or γ-replacement
reactions, where the sulfur or oxygen atom at the β-
or γ-position of the substrate is replaced with the
thiol. For example, the methylthiol moiety of L-
methionine is replaced by ethanethiol to yield
ethionine and mechanethiol13. MGL also catalyzes
deamination and γ-addition reaction of L-
vinylglycine31. MGL consists of 389–441 amino
acids, and forms homo tetramer. The active MGL
tetramer consists of two sets of the catalytic dimers
(Fig. 3) that are tightly associated26, 32, 27. The active
site is formed at the interface of the two neighboring
subunits. Each subunit contains one pyridoxal 50-
phosphate (PLP) as a cofactor (Fig. 4). MGL is
categorized into the γ-family of PLP-dependent
enzymes33.

Reaction Mechanisms

Based on the reaction mechanism of PLP γ-family
enzymes and the enzymological analysis of P.
putida MGL wild-type and mutants, it has been
proposed that MGL catalyzes elimination reaction in
the following order:

1. a Schiff-base linkage between PLP and the
lysine residue displaces the binding of the
primary amino group of the substrate and
PLP, to form an external aldimine,

2. α- and β-hydrogens of the substrate are
shifted to PLP,

3. the phenolic group of the adjacent tyrosine
residue attacks the γ-position of the
substrate as an acid catalyst,

4. the thiol group is eliminated from the
substrate, and

5. α-keto acid and ammonia are released from
PLP (Fig. 5) 31, 34.

6. The mutational studies of E. histolytica MGL
supported the assumption of an acid catalyst
of the tyrosine residue35.

Amino Acid Residues Implicated in Catalysis

Structural analysis of P. putida MGL revealed that
the six amino acid residues, Tyr59, Arg61, Tyr114,
Cys116, Lys240, and Asp241 are located in the
vicinity of the substrate binding pocket, close to
PLP32. Aside from the amino acid residues
conserved among PLP γ-family enzymes22, 36, 37, a
line of evidence indicates that Cys116 of P. putida
MGL takes part in the unique enzymatic reactions of
MGL. This cysteine is not conserved in other PLP γ-
family enzymes and substituted by glycine or
proline in cystathionine γ-lyase, cystathionine β-

lyase, and cystathionine β-synthase32, and thus was
previously suggested to be involved in the
recognition and γ-elimination of methionine38. Unlike
other MGLs, B. linens MGL degrade neither
cysteine nor cystathionine, whereas A. thaliana
MGL degrades cysteine, but hardly cystathionine39.
In both B. linens and A. thaliana MGL, the
corresponding cysteine residue was substituted by
glycine17, 39.

The mutational studies of E. histolytica and T.
vaginalis MGL isozymes also demonstrated that the
corresponding cysteine residue directly contributes
to the substrate specificity. When this cysteine was
replaced with glycine or serine, the Km values of
one isozyme for methionine and cysteine were
drastically changed, while those of the other isotype
remained unaltered 35, 40.

In P. putida MGL, chemical modification with 2-
nitrothio-cyanobenzoic acid and labeling with a PLP
analog, N-(bromoa-cetyl)pyridoxamine phosphate,
suggested the catalytic importance of Cys11641.
The substitution of this cysteine to histidine caused
a drastic increase or decrease in the activity of MGL
toward cysteine or methionine, respectively; their
catalytic efficiency (kcat/Km) for cysteine increased
by 16.2 fold, while that for methionine decreased by
552 fold, mainly due to the reduction in kcat38.
Similar changes in the activity were also observed
for methionine and cysteine analogs38.

The crystal structure revealed that the cysteine
residue is located in the proximity of a tyrosine
residue26, which attacks the γ-position of the
substrate42.

However, direct interaction between the cysteine
residue of MGL and methionine, as a substrate,
was not observed. Thus, the structures of
MGL/methionine intermediates at various reaction
stages should be resolved to elucidate how the
cysteine residue is involved in γ-elimination of
methionine.

Physiological functions

Association with Anaerobic Metabolism

Anaerobic bacteria and parasitic protozoa that
possess MGL, rely on glycolysis and amino acid
degradation for energy generation43, 44. In those
anaerobic organisms, for example, an-aerobic
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Fig.5: A proposed reaction process of α,γ-elimination of methionine by MGL

Fig.6: A proposed reaction scheme of energy generation from 2-oxobutyrate. 2-Oxobutyrate, generated from
methionine by MGL, serves as a substrate for PFOR or pyruvate dehydrogenase complex, which leads to the

ATP generation. ‘‘ox’’ and ‘‘red’’ are the oxidized and reduced form of ferredoxin, respectively



PHARMACEUTICAL SCIENCES Int.J.Curr.Res.Chem.Pharma.Sci.1(5):74-83

© 2014, IJCRCPS. All Rights Reserved 79

amitochondrial parasites, pyruvate is converted to
acetate via acetyl-CoA (Fig. 6). The conversion
proceeds in two sequential reactions catalyzed by
pyruvate:ferredoxin oxidoreductase (PFOR, EC. 1.
2. 7. 1) and acetate-CoA ligase (ADP-forming) (EC.
6. 2. 1. 13). In this process, one ATP is generated
from one pyruvate. As 2-oxobutyrate, generated
from methionine by MGL, is condensed with CoA to
form propionyl-CoA, which is in turn decomposed
by acetate-CoA ligase (ADP-forming) with a
concomitant ATP generation, the process might
contribute to energy metabolism.

Utilization of mgl for the treatment of cancers

MGL for Cancer Treatment

Many cancer cells have an absolute requirement for
plasma methionine, whereas normal cells are
relatively resistant to the restriction of exogenous
methionine45. Methionine depletion has a broad
spectrum of antitumor activities46. Under methionine
depletion, cancer cells were arrested in the late S-
G2 phase due to the pleiotropic effects and
underwent apoptosis. Thus, therapeutic exploitation
of P. putida MGL to deplete plasma methionine has
been extensively investigated47. Growth of various
tumors such as Lewis lung carcinoma48, human
colon cancer lines49, glioblastoma50, and neuro-
blastoma51 was arrested by MGL. MGL in
combination with anticancer drugs such as cisplatin,
5-fluorouracil, nitrosourea, and vincristine displayed
synergistic antitumor effects on rodent and human
tumors in mouse models52, 53, 54. It was also reported
that MGL introduced by adenovirus vector inhibited
the growth of tumors in vitro. MGL, when combined
with selenomethionine, a suicide prodrug substrate
of MGL, inhibited tumor growth in rodents and
prolonged their survivals55. Methaneselenol
produced by decomposition of selenomethionine,
was oxidized to methylseleninic acid, which in turn
oxidized protein sulfhydryls and generated reactive
oxygen species, and was then reduced back to
selenol by glutathione56. In addition to the
synergistic effects noted above, the advantage of
anticancer therapy using MGL is its wide range of
target tumors, including those resistant to the
conventional chemotherapeutics and radiation.
Taken together, MGL treatment will provide a novel
paradigm for cancer therapy.

Modifications of MGL to Reduce its Side Effects

It was reported that administration of MGL caused

anaphylactic shock in macaque monkeys57. To
overcome this problem, polyethylene glycol-
conjugated MGL (PEG-MGL) was constructed.
PEG-MGL reduced immunogenicity; the IgG titers
decreased by 10 to 10,000-fold, depending on the
binding rate of PEG and MGL, compared to naked
MGL. The half life and depletion time of MGL in the
mouse plasma was improved by PEG conjugation.
The enzymatic activity of PEG-MGL was detected
for 72 h, while that of unconjugated MGL was
undetectable after 24 h, and the half life of PEG-
MGL increased by 20 times (38 h), compared to
unconjugated MGL (2 h)58. Simultaneous
coadministration of pyridoxal 50-phosphate and
oleic acid, or dithiothreitol treatment also
strengthened effectiveness of PEG-MGL in the
rodent model 59, 60.

Other applications of MGL

Elevated blood and serum homocysteine is known
as a notorious risk factor for cardio-vascular
diseases, dementia, and Alzheimer’s disease61. It
was reported that the administration of the
combination of vitamins (folic acid, vitamins B6, and
B12) decreased homocysteine concentrations, but
did not significantly reduce the risk of death from
cardiovascular diseases62, 63, 64. Thus, therapeutic
interventions by directly lowering homocysteine by
the administration of MGL may be worth attempting.

The unique enzymological property of MGL was
applied to clinical examination of homocysteine,
cysteine, and PLP. These examination methods
utilizing MGL with sufficient sensitivities are suitable
for mass screening and, thus, can be an
economical alternate of the expensive HPLC-
dependent method.

Perspectives

Although MGL has been explored to be an ideal
drug target against microbial infections and also for
the treatment of cancers, its reaction mechanism
and physiological functions remain to be fully
elucidated. Recently structural analyzes of wild type
and mutant MGLs have been reported32, 38, 30, which
disclose the substrate recognition and reaction
mechanisms. In addition, the tertiary structures of
MGLs were resolved36, including the complex with
inhibitors. To further elucidate the reaction
mechanisms, the tertiary structures of various
stages of the MGL-substrate/prodrug/inhibitor
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complex need to be resolved. This should lead to a
further fine adjustment of anti-infective agents
targeting MGL and anti-cancer drugs exploiting
MGL.

Many cancer cells have an absolute requirement for
plasma methionine, whereas normal cells are
relatively resistant to the restriction of exogenous
methionine45. Methionine depletion has a broad
spectrum of antitumor activities46. Under methionine
depletion, cancer cells were arrested in the late S-
G2 phase due to the pleiotropic effects and
underwent apoptosis. Thus, therapeutic exploitation
of P. putida MGL to deplete plasma methionine has
been extensively investigated47. Growth of various
tumors such as Lewis lung carcinoma48, human
colon cancer lines49, glioblastoma50 and neuro-
blastoma51 was arrested by MGL. MGL in
combination with anticancer drugs such as cisplatin,
5-fluorouracil, nitrosourea, and vincristine displayed
synergistic antitumor effects on rodent and human
tumors in mouse models52, 53, 65, 54. It was also
reported that MGL introduced by adenovirus vector
inhibited the growth of tumors in vitro. MGL, when
combined with selenomethionine, a suicide prodrug
substrate of MGL, inhibited tumor growth in rodents
and prolonged their survivals55. Methaneselenol
produced by decomposition of selenomethionine,
was oxidized to methylseleninic acid, which in turn
oxidized protein sulfhydryls and generated reactive
oxygen species, and was then reduced back to
selenol by glutathione56. In addition to the
synergistic effects noted above, the advantage of
anticancer therapy using MGL is its wide range of
target tumors, including those resistant to the
conventional chemotherapeutics and radiation.
Taken together, MGL treatment will provide a novel
paradigm for cancer therapy.
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