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Abstract 
 
Sickle cell anemia (SCA) is a hereditary hemoglobinopathy characterized by chronic hemolytic anemia, vaso-
occlusive crises, and multi-organ complications. Timely and accurate diagnosis is essential for initiating effective 
preventive and therapeutic interventions. Traditional diagnostic methods, including hematologic assays and genetic 
testing, are effective but often labor-intensive, time-consuming, and limited in predictive capability. Recent advances 
in precision diagnostics, leveraging machine-assisted algorithmic models, offer the potential to accelerate detection, 
enhance accuracy, and support individualized care. By integrating hematologic, genetic, imaging, and clinical data, 
these algorithms can automate newborn screening, predict disease severity, and identify patients at risk for 
complications. This narrative review examines the development, applications, and challenges of algorithmic models 
in SCA diagnostics, highlighting their potential to transform clinical practice and improve outcomes. 
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Introduction 
 
Sickle cell anemia (SCA) is a genetic 
hemoglobinopathy resulting from a point 
mutation in the β-globin gene, which produces 
abnormal hemoglobin S. This molecular defect 
leads to red blood cell sickling, chronic hemolytic 
anemia, recurrent vaso-occlusive crises, and 
progressive multi-organ damage. SCA affects 
millions globally, with the highest prevalence in 
sub-Saharan Africa, India, the Middle East, and 
among populations of African descent worldwide. 
Early and accurate diagnosis is critical for 
initiating interventions such as prophylactic 
antibiotics, immunizations, hydroxyurea therapy, 
and regular monitoring to prevent complications 
and improve survival [1-3].Conventional 
diagnostic approaches, including complete blood 
counts, hemoglobin electrophoresis, and 
molecular genetic testing, remain the cornerstone 
of SCA detection. While effective, these methods 
are often resource-intensive, time-consuming, and 
limited in their ability to predict disease severity 
or long-term complications. These limitations are 
particularly challenging in resource-limited 
settings, where access to specialized laboratory 
infrastructure and comprehensive clinical care 
may be restricted [4-6]. 
 
Advances in precision diagnostics, particularly 
machine-assisted algorithmic models, have the 
potential to revolutionize SCA detection and 
management. By integrating multi-dimensional 
data—including hematologic profiles, genetic 
variants, imaging findings, and clinical 
histories—these algorithms can identify complex 
patterns not readily discernible through 
conventional methods. Such models facilitate 
faster, more accurate detection, risk stratification, 
and individualized patient care, from newborn 
screening to adult monitoring [7-8].This narrative 
review explores the evolving landscape of 
algorithmic models in SCA diagnostics. It 
examines applications across hematologic, 
genetic, and imaging domains, highlights multi-
modal integration for comprehensive risk 
assessment, and discusses challenges in 
implementation. By synthesizing current  

evidence, this review aims to provide a 
framework for understanding how precision, 
algorithm-driven diagnostics can improve early 
detection, personalized care, and long-term 
outcomes in SCA. 
 
Hematologic Markers: The Foundation for 
Algorithmic Models 
 
Hematologic evaluation remains the cornerstone 
of SCA detection and provides essential data for 
developing algorithmic diagnostic models. Key 
laboratory parameters, including complete blood 
count (CBC), reticulocyte count, hemoglobin 
electrophoresis, and high-performance liquid 
chromatography (HPLC), reveal red blood cell 
morphology, hemoglobin composition, and the 
presence of hemolytic anemia. In neonates, these 
tests are critical for distinguishing between sickle 
cell trait and disease, enabling timely initiation of 
prophylactic care and early interventions [9-
10].Machine-assisted algorithms enhance 
traditional hematologic screening by integrating 
multiple parameters simultaneously, improving 
diagnostic accuracy and reducing reliance on 
subjective interpretation. Supervised machine 
learning (ML) models, trained on large datasets of 
hematologic profiles, can differentiate SCA from 
other hemoglobinopathies and anemia types. 
Furthermore, predictive models can analyze 
longitudinal hematologic trends to identify 
patients at higher risk of complications, such as 
vaso-occlusive crises, stroke, or organ 
dysfunction, supporting proactive management 
strategies [11-13]. 
 
Beyond diagnosis, algorithmic evaluation of 
hematologic data facilitates risk stratification and 
monitoring over time. Automated systems can 
flag abnormal patterns in blood counts or 
hemoglobin fractions, prompting clinicians to 
intervene before severe clinical manifestations 
occur. In resource-limited settings, such 
algorithms can expand coverage by enabling 
high-throughput, standardized screening without 
requiring extensive specialist input [14-
16].Integrating hematologic markers into 
machine-assisted workflows lays the groundwork  
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for multi-modal diagnostic pathways, bridging 
laboratory findings with genetic, imaging, and 
clinical data. This approach ensures early, 
accurate, and comprehensive detection, forming a 
critical foundation for precision diagnostics and 
individualized care in SCA [17-18]. 
 
Genetic Diagnostics: Definitive Confirmation 
and Subtype Identification 
 
Genetic testing serves as the definitive method for 
confirming SCA and distinguishing among its 
various subtypes. The disease arises from a point 
mutation in the β-globin gene (HBB), resulting in 
the substitution of valine for glutamic acid at the 
sixth position of the β-globin chain. This 
molecular alteration produces hemoglobin S, 
which underlies red blood cell sickling, 
hemolysis, and vaso-occlusion [19-20].Traditional 
molecular diagnostics, including polymerase 
chain reaction (PCR), DNA sequencing, and next-
generation sequencing, enable precise 
identification of HbS and related variants such as 
HbC or compound heterozygotes. Genetic testing 
not only confirms disease presence but also 
allows genotype-based risk stratification, guiding 
treatment decisions and prognostic evaluation. 
For example, patients with HbSS genotype 
typically experience more severe clinical 
manifestations than those with HbSC or HbS/β-
thalassemia variants [21-22]. 
 
Machine-assisted diagnostic models further 
enhance genetic evaluation by integrating 
genotype data with hematologic and clinical 
information. Predictive algorithms can correlate 
specific genetic variants with disease severity, 
likelihood of complications, and response to 
therapies such as hydroxyurea or transfusion 
regimens. Deep learning models trained on large 
genomic datasets can also detect rare mutations or 
compound heterozygous patterns that might 
otherwise be missed, improving diagnostic 
precision and enabling personalized care planning 
[23].Incorporating genetic diagnostics into multi-
modal algorithmic frameworks provides definitive 
confirmation while informing individualized risk 
assessment and management strategies. By 
leveraging genotype data alongside hematologic,  

 
imaging, and clinical markers, machine-assisted 
approaches create a comprehensive patient 
profile, supporting proactive interventions and 
tailored therapy in patients with SCA [24]. 
 
Imaging Biomarkers: Detecting Early Organ 
Stress 
 
SCA is associated with progressive organ damage 
that often develops silently before clinical 
symptoms emerge. Organs commonly affected 
include the spleen, kidneys, liver, heart, lungs, 
and central nervous system. Early detection of 
subclinical organ injury is critical for preventing 
irreversible damage and optimizing patient 
outcomes. Imaging modalities provide a non-
invasive means to assess structural and functional 
changes, offering valuable input for algorithmic 
diagnostic models [25].Common imaging 
techniques in SCA include Doppler 
ultrasonography, echocardiography, and magnetic 
resonance imaging (MRI). For example, 
transcranial Doppler (TCD) ultrasonography 
measures cerebral blood flow velocities and is a 
validated predictor of stroke risk in children. 
Renal imaging can detect early nephropathy, 
while echocardiography identifies cardiac 
remodeling or pulmonary hypertension resulting 
from chronic hemolysis. MRI provides high-
resolution assessment of organ morphology and 
tissue integrity, aiding detection of subtle liver, 
spleen, or brain changes [26-27].Machine-assisted 
algorithms enhance the utility of imaging by 
automating pattern recognition and quantitative 
analysis. Deep learning models can identify subtle 
abnormalities in organ structure or perfusion that 
may be overlooked by human interpretation. 
Integrating imaging data with hematologic and 
genetic markers allows predictive models to 
assess individual risk profiles, identify patients 
likely to develop complications, and guide timely 
interventions [28]. 
 
Developing Multi-Modal Algorithmic Models 
 
The complexity and heterogeneity of SCA 
necessitate diagnostic approaches that integrate 
data from multiple domains. Multi-modal 
algorithmic models combine hematologic,  
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genetic, imaging, and clinical information to 
provide comprehensive, precise, and 
individualized assessments. By synthesizing 
diverse datasets, these models enhance diagnostic 
accuracy, accelerate detection, and enable 
personalized risk stratification [29].A typical 
multi-modal pathway begins with hematologic 
screening, which identifies patients with abnormal 
red blood cell indices or hemoglobin patterns. 
Positive findings are confirmed and refined 
through genetic diagnostics, which provide 
definitive diagnosis and subtype classification. 
Imaging biomarkers then contribute critical 
information regarding early organ stress, allowing 
detection of subclinical complications before 
symptoms appear. Longitudinal clinical data, 
including patient history, laboratory trends, and 
prior complications, further inform predictive 
modeling [30-31].Machine learning and deep 
learning algorithms play a central role in 
integrating these data streams. Predictive models 
can generate individualized risk scores, flag high-
risk patients, and guide targeted interventions. For 
instance, combining transcranial Doppler 
velocities, genotype, and hematologic trends can 
help identify children at elevated risk of stroke, 
prompting early prophylactic therapy. In adults, 
multi-modal algorithms can anticipate organ 
dysfunction, inform therapy adjustments, and 
prioritize follow-up for high-risk individuals [32]. 
 
Challenges and Considerations in 
Implementation 
 
While machine-assisted, multi-modal algorithmic 
models hold significant promise for SCA 
diagnostics, several challenges must be addressed 
to ensure effective, equitable, and sustainable 
deployment. 
 
Data Quality and Standardization: Accurate 
predictions depend on high-quality, standardized 
datasets. Variability in laboratory methods, 
incomplete clinical records, and population-
specific genetic differences can compromise 
algorithm performance. Ensuring consistent data 
collection and rigorous validation is essential [33-
34]. 
 

 
Resource Limitations: Many regions with a high 
prevalence of SCA, particularly sub-Saharan 
Africa and low-resource areas, lack infrastructure 
for high-throughput genetic testing, advanced 
imaging, or computational platforms. These 
limitations may restrict access to algorithmic 
diagnostics and hinder implementation at scale 
[35]. 
 
Clinical Integration: Algorithms are intended to 
complement, not replace, clinician expertise. 
Successful adoption requires integration into 
clinical workflows, user-friendly interfaces, and 
adequate training for healthcare providers. 
Overreliance on “black-box” models or 
insufficient understanding of outputs can limit 
their effectiveness [36]. 
 
Ethical and Regulatory Considerations: Patient 
privacy, data security, and equitable access are 
critical. Algorithms must be transparent, 
interpretable, and validated across diverse 
populations to avoid perpetuating disparities in 
care. Regulatory frameworks for AI-driven 
diagnostics are evolving and must align with 
clinical standards [37]. 
 
Sustainability and Maintenance: Algorithmic 
models require continuous updates, retraining 
with new data, and long-term maintenance to 
remain accurate and relevant. Without sustainable 
infrastructure and funding, models risk becoming 
obsolete or underutilized [38]. 
 

Conclusion 
 
Machine-assisted, multi-modal algorithmic 
models represent a transformative advance in the 
diagnosis and management of sickle cell anemia 
(SCA). By integrating hematologic, genetic, 
imaging, and clinical data, these models enable 
faster, more accurate detection, individualized 
risk stratification, and proactive patient 
management across the lifespan—from newborn 
screening to adult care.While challenges related to 
data quality, resource limitations, clinical 
integration, and ethical considerations remain, 
advances in machine learning and computational 
medicine offer promising solutions. Algorithm- 



       Int. J. Curr. Res. Chem. Pharm. Sci. (2025). 12(10): 42-49 

© 2025, IJCRCPS. All Rights Reserved                           46 

 

 
driven diagnostics have the potential to improve 
early identification of at-risk patients, optimize 
therapy, prevent complications, and enhance long-
term outcomes. Future efforts should focus on 
validating these models in diverse populations, 
ensuring equitable access, and embedding 
algorithmic tools seamlessly into clinical 
workflows. By bridging traditional diagnostics 
with advanced computational approaches, multi-
modal algorithmic models can pave the way 
toward precision medicine and more effective, 
personalized care for individuals living with SCA. 
 
 

References 
 
 

1. Ansari, J., Moufarrej, Y. E., Pawlinski, R., 
&Gavins, F. N. E. (2018). Sickle cell disease: 
a malady beyond a hemoglobin defect in 
cerebrovascular disease. Expert review of 
hematology, 11(1), 45–55. 
https://doi.org/10.1080/17474086.2018.14072
40 

2. Obeagu, E. I., &Olateju, O. R. (2025). 
Integrating sickle cell disease care into 
primary healthcare in Uganda: a narrative 
review. Annals of medicine and surgery 
(2012), 87(9), 5918–5924. 
https://doi.org/10.1097/MS9.00000000000037
13 

3. McGann, P. T., & Hoppe, C. (2017). The 
pressing need for point-of-care diagnostics for 
sickle cell disease: A review of current and 
future technologies. Blood cells, molecules & 
diseases, 67, 104–113. 
https://doi.org/10.1016/j.bcmd.2017.08.010 

4. Obeagu E. I. (2025). Strategies for reducing 
child mortality due to sickle cell disease in 
Uganda: a narrative review. Annals of 
medicine and surgery (2012), 87(6), 3279–
3288. 
https://doi.org/10.1097/MS9.00000000000029
81 

 
 
 
 
 
 

 
5. Hippisley-Cox, J., & Coupland, C. A. (2025). 

Development and external validation of 
prediction algorithms to improve early 
diagnosis of cancer. Nature communications, 
16(1), 3660. https://doi.org/10.1038/s41467-
025-57990-5 

6. Obeagu E. I. (2025). Thrombosis risk in sickle 
cell disease with HIV co-infection: unraveling 
the complex interactions and clinical 
implications - a narrative review. Annals of 
medicine and surgery (2012), 87(8), 5070–
5076. 
https://doi.org/10.1097/MS9.00000000000035
33 

7. Chong, P. L., Vaigeshwari, V., Mohammed 
Reyasudin, B. K., Noor Hidayah, B. R. A., 
Tatchanaamoorti, P., Yeow, J. A., & Kong, F. 
Y. (2025). Integrating artificial intelligence in 
healthcare: applications, challenges, and 
future directions. Future science OA, 11(1), 
2527505. 
https://doi.org/10.1080/20565623.2025.25275
05 

8. Obeagu E. I. (2025). Clotting, inflammation, 
and immunity: the multifaceted role of 
platelets in HIV and sickle cell disease - a 
narrative review. Annals of medicine and 
surgery (2012), 87(9), 5878–5886. 
https://doi.org/10.1097/MS9.00000000000036
77 

9. Arishi, W. A., Alhadrami, H. A., &Zourob, 
M. (2021). Techniques for the Detection of 
Sickle Cell Disease: A Review. 
Micromachines, 12(5), 519. 
https://doi.org/10.3390/mi12050519 

10. Obeagu E. I. (2025). Adhesion molecules in 
focus: mechanistic pathways and therapeutic 
avenues in sickle cell vaso-occlusion - a 
narrative review. Annals of medicine and 
surgery (2012), 87(9), 5775–5783. 
https://doi.org/10.1097/MS9.00000000000036
19 

 
 
 
 
 
 
 



       Int. J. Curr. Res. Chem. Pharm. Sci. (2025). 12(10): 42-49 

© 2025, IJCRCPS. All Rights Reserved                           47 

 

 
11. Carden, M. A., Fasano, R. M., & Meier, E. R. 

(2020). Not all red cells sickle the same: 
Contributions of the reticulocyte to disease 
pathology in sickle cell anemia. Blood 
reviews, 40, 100637. 
https://doi.org/10.1016/j.blre.2019.100637 

12. Meier, E. R., Wright, E. C., & Miller, J. L. 
(2014). Reticulocytosis and anemia are 
associated with an increased risk of death and 
stroke in the newborn cohort of the 
Cooperative Study of Sickle Cell Disease. 
American journal of hematology, 89(9), 904–
906. https://doi.org/10.1002/ajh.23777 

13. Higgins J. M. (2015). Red blood cell 
population dynamics. Clinics in laboratory 
medicine, 35(1), 43–57. 
https://doi.org/10.1016/j.cll.2014.10.002 

14. Obeagu E. I. (2025). Public-private 
partnerships in tackling sickle cell disease in 
Uganda: a narrative review. Annals of 
medicine and surgery (2012), 87(6), 3339–
3355. 
https://doi.org/10.1097/MS9.00000000000030
82 

15. Liu, J., Gou, Y., Yang, W., Wang, H., Zhang, 
J., Wu, S., Liu, S., Tao, T., Tang, Y., Yang, 
C., Chen, S., Wang, P., Feng, Y., Zhang, C., 
Liu, S., Peng, X., & Zhang, X. (2025). 
Development and application of machine 
learning models for hematological disease 
diagnosis using routine laboratory parameters: 
a user-friendly diagnostic platform. Frontiers 
in medicine, 12, 1605868. 
https://doi.org/10.3389/fmed.2025.1605868 

16. Obeagu E. I. (2025). Hypoxia, Inflammation, 
and Cytokine Crosstalk in Sickle Cell 
Disease: From Mechanisms to Modulation- A 
Narrative Review. Pediatric health, medicine 
and therapeutics, 16, 217–225. 
https://doi.org/10.2147/PHMT.S544217 

17. Asad, S., Ahmed, I., & Ali, N. (2017). Utility 
of Peripheral Film Findings and its 
Correlation with Automated Analyzer - An 
Audit from Tertiary Care Hospital. Journal of 
laboratory physicians, 9(1), 1–4. 
https://doi.org/10.4103/0974-2727.189233 

 
 
 

 
18. Mbayabo, G., LumbalaKabuyi, P., Ngole, M., 

Lumaka, A., Race, V., Maisin, D., Gruson, D., 
Matthijs, G., Minga, T. M., Devriendt, K., 
Van Geet, C., &Tshilobo, P. L. (2022). Value 
of DNA testing in the diagnosis of sickle-cell 
anemia in childhood in an environment with a 
high prevalence of other causes of anemia. 
Journal of clinical laboratory analysis, 36(8), 
e24593. https://doi.org/10.1002/jcla.24593 

19. Arishi, W. A., Alhadrami, H. A., &Zourob, 
M. (2021). Techniques for the Detection of 
Sickle Cell Disease: A Review. 
Micromachines, 12(5), 519. 
https://doi.org/10.3390/mi12050519 

20. Yang, N., Zhang, H., Han, X., Liu, Z., & Lu, 
Y. (2024). Advancements and applications of 
loop-mediated isothermal amplification 
technology: a comprehensive overview. 
Frontiers in microbiology, 15, 1406632. 
https://doi.org/10.3389/fmicb.2024.1406632 

21. Figueiredo M. S. (2015). The compound state: 
Hb S/beta-thalassemia. Revistabrasileira de 
hematologia e hemoterapia, 37(3), 150–152. 
https://doi.org/10.1016/j.bjhh.2015.02.008 

22. Ozgüç M. (2011). Genetic testing: predictive 
value of genotyping for diagnosis and 
management of disease. The EPMA journal, 
2(2), 173–179. 
https://doi.org/10.1007/s13167-011-0077-y 

23. Kalpatthi, R., &Novelli, E. M. (2018). 
Measuring success: utility of biomarkers in 
sickle cell disease clinical trials and care. 
Hematology. American Society of 
Hematology. Education Program, 2018(1), 
482–492. 
https://doi.org/10.1182/asheducation-
2018.1.482 

24. Jordan, L. C., Roberts Williams, D. O., 
Rodeghier, M. J., Covert Greene, B. V., 
Ponisio, M. R., Casella, J. F., McKinstry, R. 
C., Noetzel, M. J., Kirkham, F. J., Meier, E. 
R., Fuh, B., McNaull, M., Sarnaik, S., 
Majumdar, S., McCavit, T. L., & DeBaun, M. 
R. (2018). Children with sickle cell anemia 
with normal transcranial Doppler ultrasounds 
and without silent infarcts have a low 
incidence of new strokes. American journal of 
hematology, 93(6), 760–768. 
https://doi.org/10.1002/ajh.25085 



       Int. J. Curr. Res. Chem. Pharm. Sci. (2025). 12(10): 42-49 

© 2025, IJCRCPS. All Rights Reserved                           48 

 

 
25. Vancauwenberghe, T., Snoeckx, A., 

Vanbeckevoort, D., Dymarkowski, S., 
&Vanhoenacker, F. M. (2015). Imaging of the 
spleen: what the clinician needs to know. 
Singapore medical journal, 56(3), 133–144. 
https://doi.org/10.11622/smedj.2015040 

26. Qhalib, H. A., & Zain, G. H. (2014). 
Hepatobiliary Complications of Sickle Cell 
Disease among Children Admitted to Al 
Wahda Teaching Hospital, Aden, Yemen. 
Sultan Qaboos University medical journal, 
14(4), e556–e560.  

27. Czap, A. L., &Sheth, S. A. (2021). Overview 
of Imaging Modalities in Stroke. Neurology, 
97(20 Suppl 2), S42–S51. 
https://doi.org/10.1212/WNL.0000000000012
794 

28. Gao, X., Lv, Q., & Hou, S. (2023). Progress in 
the Application of Portable Ultrasound 
Combined with Artificial Intelligence in Pre-
Hospital Emergency and Disaster Sites. 
Diagnostics (Basel, Switzerland), 13(21), 
3388. 
https://doi.org/10.3390/diagnostics13213388 

29. Arishi, W. A., Alhadrami, H. A., &Zourob, 
M. (2021). Techniques for the Detection of 
Sickle Cell Disease: A Review. 
Micromachines, 12(5), 519. 
https://doi.org/10.3390/mi12050519 

30. Olupot-Olupot, P., Connon, R., Kiguli, S., 
Opoka, R. O., Alaroker, F., Uyoga, S., 
Nakuya, M., Okiror, W., Nteziyaremye, J., 
Ssenyondo, T., Nabawanuka, E., Kayaga, J., 
Williams Mukisa, C., Amorut, D., Muhindo, 
R., Frost, G., Walsh, K., Macharia, A. W., 
Gibb, D. M., Walker, A. S., … Williams, T. 
N. (2022). A predictive algorithm for 
identifying children with sickle cell anemia 
among children admitted to hospital with 
severe anemia in Africa. American journal of 
hematology, 97(5), 527–536. 
https://doi.org/10.1002/ajh.26492 

 
 
 
 
 
 
 

 
31. Uçucu, S., Karabıyık, T., &Azik, F. (2022). 

Difficulties in the diagnosis of HbS/beta 
thalassemia: Really a mild disease?.Journal of 
medical biochemistry, 41(1), 32–39. 
https://doi.org/10.5937/jomb0-30420 

32. Cetinic, I., de Lange, C., Lagerstrand, K., 
Kindblom, J. M., Sjögren, L., &Hebelka, H. 
(2025). Applicability of multiple quantitative 
ultrasound liver biomarkers in children and 
adolescents with severe obesity. BMC 
pediatrics, 25(1), 390. 
https://doi.org/10.1186/s12887-025-05750-1 

33. Obeagu E. I. (2025). Sickle cell anemia and 
social justice: a pathway to equitable 
healthcare in Uganda. Annals of medicine and 
surgery (2012), 87(11), 7283–7293. 
https://doi.org/10.1097/MS9.00000000000039
10 

34. Ally, M., &Balandya, E. (2023). Current 
challenges and new approaches to 
implementing optimal management of sickle 
cell disease in sub-Saharan Africa. Seminars 
in hematology, 60(4), 192–199. 
https://doi.org/10.1053/j.seminhematol.2023.0
8.002 

35. Heidt, B., Siqueira, W. F., Eersels, K., Diliën, 
H., van Grinsven, B., Fujiwara, R. T., &Cleij, 
T. J. (2020). Point of Care Diagnostics in 
Resource-Limited Settings: A Review of the 
Present and Future of PoC in Its Most Needed 
Environment. Biosensors, 10(10), 133. 
https://doi.org/10.3390/bios10100133 

36. Ghoneim, A. M. E., Mohamed, S. K., Hetta, 
W. A., &Alkaphoury, M. G. (2025). Role of 
transcranial Doppler ultrasound in early 
assessment of acute post-traumatic brain 
injury. Medicine, 104(42), e45171. 
https://doi.org/10.1097/MD.00000000000451
71 

37. Zhang, B., Wan, Z., Luo, Y., Zhao, X., 
Samayoa, J., Zhao, W., & Wu, S. (2025). 
Multimodal integration strategies for clinical 
application in oncology. Frontiers in 
pharmacology, 16, 1609079. 
https://doi.org/10.3389/fphar.2025.1609079 

 
 
 
 



       Int. J. Curr. Res. Chem. Pharm. Sci. (2025). 12(10): 42-49 

© 2025, IJCRCPS. All Rights Reserved                           49 

 

 
38. Boardman, F. K., Clark, C., Jungkurth, E., & 

Young, P. J. (2020). Social and cultural 
influences on genetic screening programme 
acceptability: A mixed-methods study of the 
views of adults, carriers, and family members 
living with thalassemia in the UK. Journal of 
genetic counseling, 29(6), 1026–1040. 
https://doi.org/10.1002/jgc4.1231 

 
 
 

 
 
  

Access this Article in Online 
 

 

Website: 
www.ijcrcps.com 
 
Subject: 
Haematology 

Quick Response Code 

DOI: 10.22192/ijcrcps.2025.12.10.005 

 

How to cite this article:  
Emmanuel Ifeanyi Obeagu. (2025). Precision Diagnostics in Sickle Cell Anemia: Developing Algorithmic 
Models for Faster and More Accurate Detection.  Int. J. Curr. Res. Chem. Pharm. Sci. 12(10): 42-49. 
DOI: http://dx.doi.org/10.22192/ijcrcps.2025.12.10.005 
 


