INTERNATIONAL JOURNAL OF CURRENT RESEARCH IN CHEMISTRY AND PHARMACEUTICAL SCIENCES

(p-ISSN: 2348-5213: e-ISSN: 2348-5221) www.ijcrcps.com

Research Article

SYNTHESIS AND SPECTRAL STUDY OF (MONO AND BI CYCLIC)- COMPOUNDS FROM CARBONYL COMPOUNDS

NAGHAM .MAHMOOD.ALJAMALI^{1*} AND EMAN ABDULWAHAB ABDULLAH²

Assist. Professor ,Chem.Dept., Education College, Kufa Univ., Iraq¹. Assist. Lecture ., Chem. Dept ., Kufa Univ. Iraq².

Corresponding Author: Dr.Nagham_mj@yahoo.com

Abstract

This work concerned with preparation of thirteen compounds involved (mono and bi cyclic) compounds by (Diels-Alder, fused ring, intra molecular cyclization, chalcone)-reactions to give mono cycles like compounds [2-5, 8, 9, 13] and bi cycles like compounds [6, 7, 10-12], most of reactions represent (alkylation, condensation) to formation of (imidazole cycle, pyrazole cycle, thiazine cycle, diazine cycle, oxazine cycle). The structure of synthesized compounds [1-13] were confirmed with (C.H.N)-analysis, TLC-technique, melting points with spectral identification techniques (FT.IR, H.NMR).

Keywords: mono, bicycle, carbonyl, chemical identification, .

Introduction

Cyclic compounds by far are the largest classical division of organic chemistry . The compounds which contain thiophene nucleus have been reported to posses pharmacological biological important like insecticide ,fungicidal ,antibacterial and antihypertensive ⁽¹⁻⁴⁾, for this , several different methods have been described for synthesis of macro compounds Hetero cycles bearing nitrogen ,sulphur ,oxygen, constitute the core structure of a number of biologically interesting compounds ,some of them are pyrazoles , imidazoles ,which are structural subunits of several biologically active compounds⁽¹⁻⁴⁾.

Heterocycles have been used a scaffold to synthesize numerous therapeutic molecules , which are known for their medicinal importance as anticancer antibacterial ,antiseptics, & are known to be involved in a number of biological reactions such as inhibition of DNA ,RNA & protein synthesis⁽⁵⁻⁸⁾.

The utility of anil compounds lay in their usefulness as synthons in the synthesis of bio active molecules , it has

ben found that the activity of hetero cycles increases on the incorporation of azomethine groups ⁽⁹⁻¹³⁾.

Experimental:

All chemicals used were supplied from BDH & Fluka-company , purity 99.5 % .

All measurements were carried out by :

 $1-Melting \ points$: electro thermal 9300 , melting point engineering LTD , U.K

2 – FT . IR spectra : fourrier transform infrared shimadzu 8300 – (FT . IR), KBr disc

3 – H.NMR-spectra and (C.H.N) – analysis : in Kashan University , Tahran.

Synthesis of Compound [1]

Condensation reaction by refluxing ethanolic mixture of equimolar amounts (0.1 mole ,12.0 gm) of p-methyl benzaldehyde & (0.1 mole ,9.7 gm) of 2-amino

© 2014, IJCRCPS. All Rights Reserved

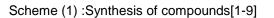
thiophene were react for (2hrs), the precipitate was filtered & recrystallized from ethanol to produce 83% of anil compounds [1].

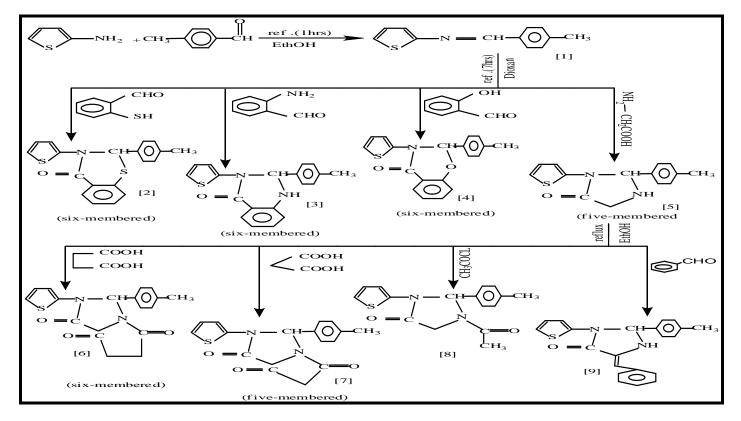
Synthesis of Compounds [2-5]:

A mixture of compound [1] (0.01 mole , 2.01 gm)was reacted with one of {(0.01 mole,1.38 gm)of 2-mercapto benzaldehyde), (0.01mole, 1.19 gm of 2-amino benzaldehyde), (0.01 mole , 1.20 gm of salicyldehyde) ,(0.01mole , 0.75 gm of alanine)}, respectively , under reflux for (10hrs) in presence of anhydrous 1,5-dioxan (100) ml , the precipitate was filtered , dried ,& crystallized from absolute ethanol to produce % (86,84,82,86) respectively from compounds [2,3,4,5].

Synthesis of Compounds [6-9]:

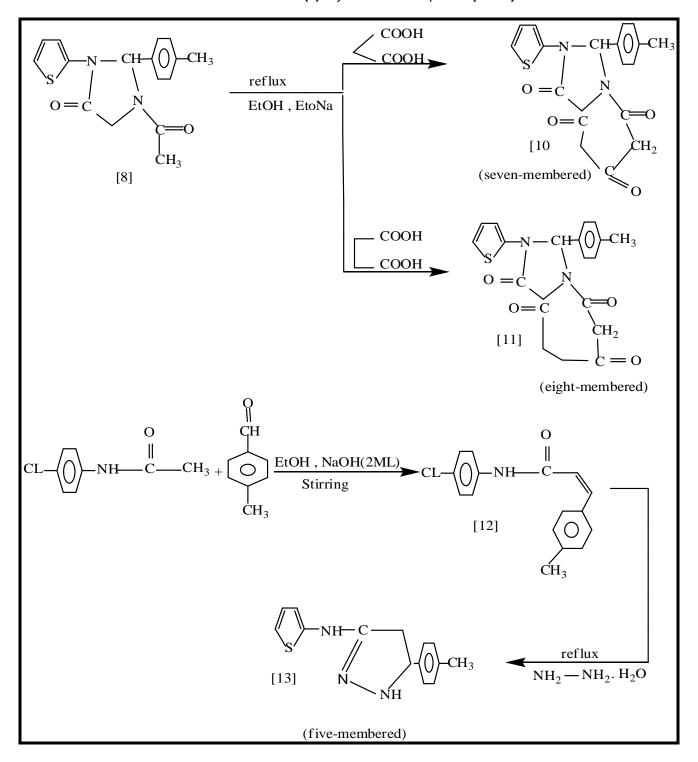
A mixture of compound [5] (0.01 mole , 2.58 gm)was reacted with one of {(0.01 mole,1.18 gm)of succinic acid), (0.01mole,1.04 gm of malonic acid), (0.01 mole , 0.78 gm of acetyl chloride) ,(0.01mole , 1.06 gm of benzaldehyde)}, respectively , with reflux for (6hrs) in presence of absolute ethanol (100) ml with drops of sodium ethoxide. the precipitate was filtered , dried ,& crystallized from absolute ethanol to give % (82,85,87,86) respectively, from compounds [6,7,8,9].


Synthesis of Compounds [10,11]:


A mixture of compound [8] (0.01 mole, 3 gm)was reacted with one of {(0.01 mole,1.04 gm)of malonic acid), (0.01mole,1.18 gm of succinic acid)} respectively under reflux for (6hrs) in presence of absolute ethanol (100) ml with drops of sodium ethoxide, the precipitate was filtered , dried ,& crystallized from absolute ethanol to produce % (87,85) respectively, from compounds [10,11].

Synthesis of Compounds [12,13]:

A mixture of p-methyl benzal dehyde (0.1mole ,1.2 gm)with P-chloro acetanilide(0.1 mole , 1.69gm) in ethanol (100) ml& 2ml of (3% sodium hydroxide solution)with stirring for (5hrs) at room temperature ,then refluxed for (8hrs), , the precipitate was filtered , dried ,& crystallized from ethanol to produce 88 % of compounds [12].


To prepare compound [13], mixture of compound [12] (0.01 mole , 2.71 gm) & hydrazine(0.01 mole , 0.50 gm) under reflux for (7hrs) in presence of absolute ethanol (100) ml, the precipitate was filtered , dried ,& crystallized from ethanol to produce % 86 of compound [13].

© 2014, IJCRCPS. All Rights Reserved

Results and Discussion

In this work , we wish to report on anew approach for preparation of hetero atoms cycles (S,N,O) & hetero cycles (5,6,7,8-membered) ring from compounds [1-13].

Their FT.IR-Spectrum showed an absorption band at (1620) cm⁻¹ in compound [1] due to the (CH=N) anil

group ,which disappear & other bands are appear at {(1685-1698) cm⁻¹ for amide⁽¹⁵⁻¹⁸⁾ group (CO-NH-),(1530-1545) cm⁻¹ for (C-N) endocycle & bands due to(C-S , C-NH , C-O , CH-NH))⁽¹⁵⁻¹⁸⁾ in formed compounds [2-13] also new bands appeared such as (C=CH) due to alkene in compounds [9,12] ,bands at (1710-1725)cm⁻¹ due to carbonyl of ketone in formed cycles in compounds [6-11] , & other bands are summarized in table (1) .

Table (1): (FT.IR)-data (cm	¹) of compounds [1-13].
-----------------------------	-------------------------------------

Comps.	I.R _(KBR) (Important Groups)						
[1]	(CH=N) azomethine group : 1620						
[2]	(O=C-N) amide of endocyclic :1698,(C-N) endocyclic :1537 ,(C-S) endocyclic :675 ,1404, (C=C) aromatic:1581 .						
[3]	(O=C-N) amide of endocyclic :1690,(C-N) endocyclic :1540 ,(NH): 3320 .						
[4]	(O=C-N) amide:1698,(C-N) endocyclic :1540 ,(C-O-C): 1050 .						
[5]	(O=C-N) amide:1685,(C-N) endocyclic :1535 ,(NH): 3330, (CH) aliphatic :2930 .						
[6]	(O=C-N) amide:1690,(C-N) endocyclic :1530 ,(C=O) ketone: 1725, (CH) aliphatic :2950 .						
[7]	(O=C-N) amide:1680,(C-N) endocyclic :1498 ,(C=O) ketone: 1717, (CH) aliphatic :2925 .						
[8]	(O=C-N) amide:1690,(C-N) endocyclic :1544 ,(CH) aliphatic :2930.						
[9]	(O=C-N) amide:1695,(C-N) endocyclic :1545 ,(NH):3320,(=CH) alkene:3080 .						
[10]	(O=C-N) amide:1686,(C-N) endocyclic :1537 ,(C=O) ketone: 1720, (CH) aliphatic :2920 .						
[11]	(O=C-N) amide:1690,(C-N) endocyclic :1540 ,(C=O) ketone: 1725, (CH) aliphatic :2940 .						
[12]	(O=C-N) amide:1695,(=CH) alkene: 3050 .						
[13]	(C=N) azomethine:1620,(N-N) endocyclic :1400 ,(NH) : 3330, (CH) aliphatic :2940 .						

Int. J. Curr.Res.Chem.Pharma.Sci. 1(9): (2014):174-180

Their H.NMR-Spectra showed signal at 8.89 for proton of azomethine group (CH=N) in compound [1] which disappear & new signals appear at (5.96 for CH-S)^(16, 9) in compound [2], (3.9 for CH-O) in compound[4], (3.09 - 3.19 for CH-NH in cyclic

compounds[3,5-11,13], (9.72 for proton of amide (NH-CO) in compound [12] as result of formed cycles ,& other data of functional groups show in the following , Table (2).

Table (2): H.NMR-data(ppm) of compounds [1-13].

Comps	H.NMR _(DMF) (Important peaks)							
[1]	8.89 {1H ,(CH=N)} proton of azomethine group.							
[2]	6.34-7.8 (Ar-H) , 5.96 (CH-S).							
[3]	6.6-7.8 (Ar-H) ,3.11 (CH-NH) .							
[4]	6.36-7.3 (Ar-H) , 3.9 (CH-O) .							
[5]	3.09 (CH-NH) , 9.96 (CH ₂ -CO-N) .							
[6]	3.1 (1H ,CH-N), 12.2 (O=C-CH ₂ -) ,10.2 (CH ₂ -CO-N) .							
[7]	3.19 (1H ,CH-N) , 12.79 (2H , O=C-CH ₂).							
[8]	3.1 (1H , CH-N), 10.1 (CH ₂ -CO-N), 10.5 (CH ₃ -CO-N) .							
[9]	2.3 (1H ,CH=C), 3.4 (CH-NH), 6.4-7.2 (Ar-H).							
[10]	3.12 (1H,CH-N), 12.3 (2H, O=C-CH ₂ -C=O) .							
[11]	3.3(1H,CH-N) ,12.59 (CH ₂ -CO-C), 12.72(O=C-CH ₂ -C=O) .							
[12]	9.72 (CO-NH-), 2.63 (CH=CH), 6.34-7.56 (Ar -H) , 1.01 (CH ₃) .							
[13]	1.2 (2H,CH ₂ –C) , 3.2 (CH-NH) , 6.4- 7.2 (Ar- H) , 1.2 (CH ₃) .							

Their (C.H.N)- analysis & melting points , it was found from compared the calculated data with experimentally data of these compounds ,the results were

compactable , the data of analysis , M.F & melting points are listed in table (3) .

Int. J. Curr.Res.Chem.Pharma.Sci. 1(9): (2014):174–180 Table (3): Physical properties & (C.H.N)-Analysis of compounds[1-13].

Comps	M.F	M.P	Name of compounds	Calculation/Found		
		(C)		C%	H%	N%
[1]	$C_{12}H_{11}N_1S_1 \qquad 161 \qquad 2-(4 \text{Toluine})- \text{ thiophenidine} \ .$	2-(4 Toluine)- thiophenidine .	71.641	5.472	6.965	
				71.342	5.211	6.654
[2] C ₁₉ H ₁₅ NOS ₂ 2	242	· · · ·	67.655	4.451	4.154	
			5,6- benzo-1,3-Thiazane-4-one.	67.462	4.318	4.310
[3] C ₁₉ H ₁₆ N ₂ OS	C ₁₉ H ₁₆ N ₂ OS	218	2-(4 ⁻ Toluine)- 3-thiophenidine-	71.25	5.00	8.750
		5,6- benzo-pipyrimidine-4-one.	71.012	5.021	8.592	
[4]	C ₁₉ H ₁₅ NO ₂ S 235 2-(4 ⁻ Toluine)- 3-thiophene-1-	. , .	71.028	4.672	4.361	
		oxo-5,6- benzo-pipyrimidine-4- one.	71.320	4.711	4.451	
[5]	C ₁₄ H ₁₄ N ₂ OS 195 2-(4 ⁻ - Toluine)- 3-thiophene	65.116	5.426	10.852		
			Imidazoline-4-one.	65.014	5.201	10.312
[6]	C ₁₈ H ₁₆ N ₂ O ₃ S	238	3-(2 ⁻ - Thiophene) -2-(4 ⁻ -	63.529	4.705	8.235
			Toluine)-1,5-(2,5- dione– azane)– imadazol-4-one.	63.342	4.611	8.301
[7] C ₁₇ H	C ₁₇ H ₁₄ N ₂ O ₃ S	222	3-(2 ⁻ - Thiophene)-2-(4 ⁻ -Toluine)- 1,5-(2 ⁻ ,4 ⁻ -di one –azolidine)– imadazol-4-one.	62.576	4.294	8.588
				62.328	4.271	8.401
[8] C	C ₁₆ H ₁₆ N ₂ O ₂ S	200	2-(4 ⁻ -Toluine)-3-thiophene-1- aceto- Imidazoline-4-one.	64.00	5.333	9.333
				64.018	5.350	9.114
[9]	C ₂₁ H ₁₈ N ₂ OS	210	3-(2 ⁻ - Thiophene) -2-(4 ⁻ -	72.832	5.202	8.092
	Toluine)-1,5-(2 ⁻ ,4 ⁻ ,6 ⁻ -Tri one – azecane)–imadazol-4-one.	Toluine)-1,5-(2 [°] ,4 [°] ,6 [°] -Tri one – azecane)–imadazol-4-one.	72.672	5.151	8.001	
[10]	D] C ₁₉ H ₁₆ N ₂ O ₄ S 240 3-(2 ⁻ - Thiophene)-2-(4 ⁻ - Toluine) 1,5-(2 ⁻ ,4 ⁻ ,6 ⁻ - Tri one – azepane)- imadazol-4-one.	3-(2 ⁻ - Thiophene)-2-(4 ⁻ -Toluine)-	61.956	4.347	7.608	
				61.813	4.238	7.516
[11]	C ₂₀ H ₁₈ N ₂ O ₄ S 229	229	2-(4 ⁻ -Toluine)- 3-thiophene-5- styrene- Imidazoline-4-one.	62.827	4.712	7.329
				62.719	4.623	7.113
[12]	C ₁₆ H ₁₄ N ₁ O ₁ Cl	165	N-(4-Chloro phenyl)-3-Toluine acrylamide.	70.718	5.156	5.156
				70.651	5.08	5.201
[13]	C ₁₆ H ₁₆ N ₃ Cl 176	176	4-[(5 ⁻ -Toluine-4 ⁻ ,5 ⁻ -dihydro pyrazol-3 ⁻ -yl)amino] chloro benzene.	67.250	5.604	14.711
				67.161	5.587	14.511

References

- Shridhar .A , Keshavayya . J, Joy .H & Shoukat . R., (2011) , International .Res.J of pure . Appl.Chem., 1,3, 119-129.
- 2. Kumar .K, Reddy . K , Vamsikauth .A, Omprakash . G and Dubey .P., (2011).,Der.Pharma . Chemica .,3,5,113-122.
- 3. Faid allah .M ,Rostom . A and Mohamm .S ., (2010) .,J.K .A.U .Sci .,22 ,1 ,177 -191 .
- 4. Coquerel .Y , Bensa . D , Doutheau . A and Rodriguez . J .,(2006) ., Org . Lett ., 8,21, 4819 -4822 .
- 5. Hatem . G and Mark . B ., (2011) , European . J .Chem ., 2 ,2 ,214 -222 .
- 6. Parameswaran . M , Thengungal .K and Gopalakrish. S. ,(2009) , Acta . Pharma ., 59,159-170.
- 7. Singaravel .M , Sarkkarai. A & Kambikudi. R.,(2010)., International .J.pharma.Sci & Res., 1,9,391-398.
- 8. Smaail .R, Souad. S & Amal .R.,(2010), Lett. Drug . Design . Discovery .,7,27-30.
- 9. Nagham M .Aljamali ., European Journal of Scientific Research., 110,(1)., 52-57., (2013).
- 10. Ahasan .N & Islam . M .,Bangladesh. J. Pharma., 2,81-87. .,(2007).
- 11. Palak. P ,Hiran. M & Dhrubo. J.,(2011) , International . J . Drug. Dev. &Res., 3,2, 248-255.
- 12. Ganesh .C, Yadav .D & Venkatesh .K.,(2010), Indian .J.Chem., 49,13,1151-1154.
- 13. Wadher. S, Karande .N, Sonawane .S & Yeole .P., (2009), Int.J.Chem.Tech .Res.,1,4,1303-1307.
- 14. Yang .G, Cao .L & Cui.P., (2005), J.Chin .Chem. Soci., 52,1033-1036.
- 15. 15. Nagham M .Aljamali ., World Journal of Pharmacy and Pharmaceutical Sciences. 3(6).,(2014).
- 16. Vibhute .A,Mokle .S,Nalwar .Y &Gurav .,Bulletin .Cata.Soci . India ,8,164-168.,(2009).
- 17. Nagham M .Aljamali ., As. J. Resch. 7 (2)., (2014).
- 18. 18. Nagham M .Aljamali , Radiya.A and Haider.K .,World Journal of Medicine and Medical Science Research. 2(1)., 6-16., (2014).