INTERNATIONAL JOURNAL OF CURRENT RESEARCH IN CHEMISTRY AND PHARMACEUTICAL SCIENCES

(p-ISSN: 2348-5213: e-ISSN: 2348-5221) www.ijcrcps.com

Research Article

SYNTHESIS AND BIOLOGICAL STUDY OF NITROGEN CYCLIC COMPOUNDS

RAJA AABED ALAMEER GAFEL AND EMAN ABDULWAHAB ABDULLAH²

¹Lecture ., Chem. Department ., Education College , Kufa . Univ. Iraq . ²Assist. Lecture ., Chem. Department ., Education College , Kufa . Univ. Iraq . Corresponding Author

Abstract

In this work , di carbonyl compounds has been used to the reaction with P -formal benzaldehyde forming the corresponding bis(Dimethyl malonate) which ciclyze with di amine compounds to produce bis { (5,6,7) –memberedof di aze cycles } , & some of them reacts with different amino compounds to produce corresponding bis substituted .The structures of the synthesized compounds [1-10] have been confirmed by (FT.IR -spectra , H.NMR -spectra , C.H.N - analysis) & melting points .

Keywords: carbonyl compounds , diazolidine , formal.

Introduction

Di alkyl malonate is important class of compounds is several field of organic chemistry such as alkylation of carbonyl^(1,2) compounds , incorporation with heterocyclic compounds to produce pharmaceutical compounds which have a wide range of pharmacologcal properties⁽³⁻⁵⁾ in pharmaceutical chemistry field , because of the number & the significance of these applications , many methods^(6,7) have been reported for the preparation of these compounds in the last years (diazolidine , diazine , diazepan)⁽⁸⁻¹¹⁾.

Di nitrogen (di az)-containing heterocyclic compounds $^{(12,13)}$ have received considerable attention due to their biological activity which represented as anti tumer , anti viral , anti fungal , anti cancer , analagesic , anti -Hiv , anti microbial ...etc .

In recent years , chemistry of di az compounds developed very fast due to the discovery of the diverse biologically active (diazolidine , diazine , diazepan) derivatives⁽¹⁴⁾.

Experimental

All chemical used from BDH & sigma -company , FT.IR spectra were recorded on shimadzu 8300 , Kbr -disk ., H.NMR -spectra & (C.H.N) -analysis were recorded in

© 2014, IJCRCPS. All Rights Reserved

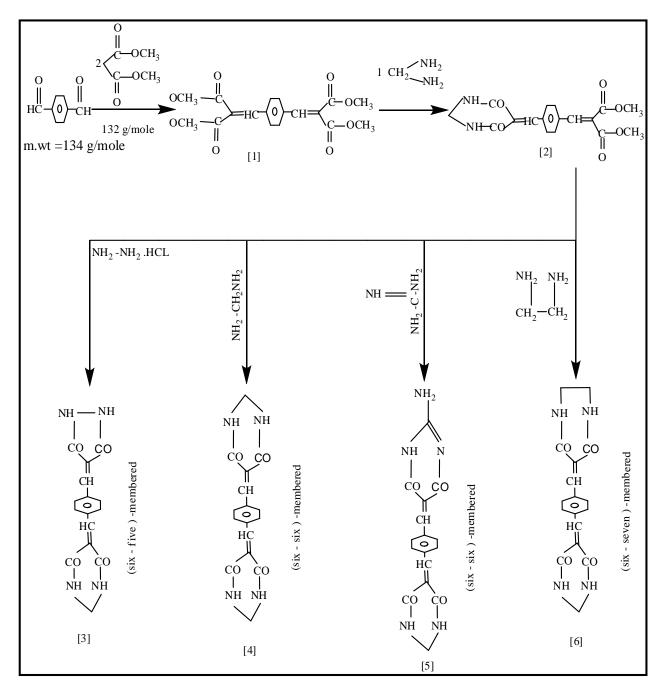
Malaysia , the melting points were determined by digital - electrothermal 9300 LTD , UK .

Synthesis of compounds [1,2] :

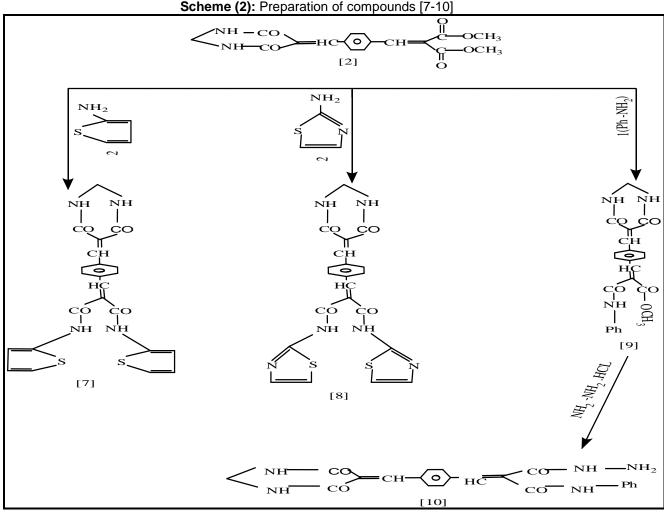
A mixture of P -formal benzaldehyde (0.1 mole) reacted with di methyl malonate (0.2 mole) in basic medium of sodium hydroxide (10%) with mechanical stirr at room temperature for (4hrs), the precipitate was filtered & recrystallized to yield 88% of compounds [1], which (0.1 mole) reacts according to procedures^(2,9) with (0.1 mole) of methylene di amine under reflux for (3hrs) in presence of absolute ethanol, the precipitate was filtered & recrystallized to give 89% of compounds [2].

Synthesis of compounds [3-6] :

The synthesis of these compounds was carried out according literature^(2,9)</sup>, a mixture of compound [2] (0.01 mole) with one of (0.01 mole) from (hydrazine, methylene di amine, quanidine, ethelyne di amine) respectively were heated under reflux for (5hrs) in presence of absolute ethanol, the precipitate was filtered & recrystallized to yield (87, 85, 87, 89) % of compounds [3-6] respectively.


Synthesis of compounds [7-9]

According to procedure⁽⁹⁾, a mixture of compounds [2] (0.01 mole) with one of {(0.02 mole) from (2 -amino thiophene, 2 -aminothiazole) (0.01 of aniline)} respectively were refluxed for (5-6 hrs) in presence of absolute ethanol, the precipitate filtered recrystallized to yield (85, 87, 88) % of compounds [7-9] respectively.


Synthesis of compound [10]

A mixture of equimolar (0.01 mole) of compound [9] with hydrazine were reacted under reflux for (4hrs) &stirr, precipitate was filtered & dried, recrystallized to yield 86 % of compound [10].

Int. J. Curr.Res.Chem.Pharma.Sci. 1(9): (2014):165–173

Results and discussion

The formation of compound [1] as starting compound proceed via reaction between dimethyl malonate with di aldehyde compound such as P -formal benzaldehyde, then compound [1] reacts with diamine compounds such as (methylene diamine , hydrazine , guanidine , ethylene diamine to yield cyclic compounds [2-6], & compound [2] reacts with primary amine compounds in one side or two side from compound [2] to yield compounds [7-10].

All these compounds characterized by I.R -spectra , (C.H.N) -analysis , melting points &some of them by H.NMR -spectra :

The I.R -spectra , showed an absorption band at (3026-3095) cm⁻¹ due to (CH=C) of alkene in all compounds [1-10] for formation of double bond of alkene , absorption band at (1728) cm⁻¹ due to carbonyl of ester group⁽²⁾ (CO-O-) in compounds [1,2]

which disappeared one of them & appeared other bands such as {(1660 - 1696), (3278 - 3478)} due to {(carbonyl of amide CO-NH), (amine of amide NH - CO)}⁽²⁾ respectively in compounds [3-10], & other bands are summarized in table (1) & figures (1-10).

The H.NMR -spectra showed important peaks at $\mathfrak{F}(6.40-6.60)$ due to proton of (CH=C) alkene in all compounds , peaks at $\mathfrak{F}(10.03-10.28)$ due to (NH-CO) proton of amide⁽²⁾ in compounds [2,3,8,9] , peaks at $\mathfrak{F}(3.85, 4.30)$ due to protons of methyl group in ester (-COOCH₃) in compounds [2,9] respectively , peaks at $\mathfrak{F}(3.35-3.62)$ due to protons of methylen⁽¹⁵⁾ in cycle (NH-CH₂-NH) in compounds [2,3,8,9] , & other signals of functional groups show in the following , table (2).

The (C.H.N)-analysis & melting points , the experimental data were good results with calculated data , all these data & physical properties in table (3)

Int. J. Curr.Res.Chem.Pharma.Sci. 1(9): (2014):165–173 Table (1) : (FT.IR) -data (cm⁻¹) of compounds [1-10]

Comp.	(Only important frequency)				
No.	(CO) carbonyl of amide	(NH) of amide	(CH=C)	Other groups	
[1]			3048	(CO-O-)carbonylof ester :1728	
[2]	1660	3482	3046	(CO-O)carbonyl of ester: 1714	
[3]	1695	3299	3091		
[4]	1696	3290	3070		
[5]	1688	3312	3080	(C=N) :endocycle : 1537 ,	
				(NH ₂) :3478 .	
[6]	1691	3492	3091		
[7]	1696	3317	3091	(C-S) in thiophene ring :676 ,1271	
[8]	1686	3278	3081	(C-S) in thiophene ring :675, 1211, (C-N) in	
				thiophene ring :1168	
[9]	1682	3478	3026	(CO-O-) carbonyl of ester :1728	
[10]	1688	3278	3095	(NH ₂) : 3300 .	

Table (2) : H.NMR (<code>ʒ ppm</code>) of some Compounds .

Comp.	H.NMR _{((DMSO))} ((Only important peaks))				
No.	(NH) of amide	(CH=C)	methylene of (NH-CH ₂ -NH)	Other peaks	
[2]	10.04	6.60	3.62	4.30(COOCH ₃)methyl of ester .	
[3]	10.10 , 10.28	6.40 , 6.66	3.50		
[8]	10.08 , 10.22	6.45	3.55	7.35 (proton of thiazol ring)	
[9]	10.24 , 10.03	6.50	3.35	3.85 (COOCH ₃)methyl of ester	

Table (3) : Physical properties & (C.H.N) -analysis of Compounds [1-10] .

Comp.	M.F	I.F M.p (+2)C Name of compounds		Calc. /Found.			
No.				%C	&H	%N	
[1]	C ₁₈ H ₁₈ O ₈	162	1-{(1 ⁻ ,4 ⁻ -phenyl)-tetra methyl -bis (2 -ene - propanoate)} .	59.668 59.421	4.972 4.763		
[2]	$C_{17}H_{16}O_6N_2$	189	1-{2-(diazane-4,6-dione)styrene}- 3-dimethyl-2-ene-propanoate	59.302 59.188	4.651 4.44	8.139 8.09	
[3]	$C_{15}H_{12}O_4N_4$	194	2-(diazane-4,6-dione)-2- (diazolidine-3,5-dione)-4- ethene- 1-styrene.	57.692 57.38	3.846 3.67	17.948 17.71	
[4]	$C_{16}H_{14}O_4N_4$	198	2,2-bis(diazane-4,6-dione)-4- ethene -styrene .	58.895 58.625	4.294 4.13	17.177 17.05	
[5]	$C_{16}H_{13}O_4N_5$	220	2-(diazine-4,6-dione-2-amino)-2- (diazane-4,6-dione)-4- ethenestyrene .	56.637 56.37	3.384 3.601	20.64 20.41	
[6]	$C_{17}H_{16}O_4N_4$	208	2-(diazepane-5,7-dione)-2- (diazane-4,6-dione)-4-ethene- styrene .	60.00 59.93	4.705 4.44	16.470 16.25	
[7]	$C_{23}H_{18}O_4N_4S_2$	241	(1,4-phenyl)-2-(diazane -4,6-	57.740	3.765	11.715	

Int. J. Curr.Res.Chem.Pharma.Sci. 1(9): (2014):165-173

	Int. J. Curr.Res.Cnem.Pharma.Sci. 1(9): (2014):165–173					
			dione)-ethene-2-bis (thiophene	57.51	3.56	11.54
			amide) ethene .			
[8]	$C_{21}H_{16}O_4N_6S_2$	284	(1,4-phenyl)-2-(diazane -4,6-	52.5	3.33	17.50
			dione)-ethene-bis (thiazole amide)	52.31	3.20	17.27
			ethene.			
[9]	$C_{22}H_{19}O_5N_3$	273	(1,4-phenyl)-2-(diazane -4,6-	65.18	4.69	10.37
			dione)-ethene-2-(phenyl amide)-3-	65.04	4.43	10.27
			methyl-1-ene -propanoate .			
[10]	$C_{21}H_{19}O_4N_5$	259	(1,4-phenyl)-2-(diazane-4,6-dione)-	62.22	4.69	17.28
			ethene-2-(phenyl amide)-3-	62.10	4.29	17.15
			hydrazo-3-one -1-propane .			

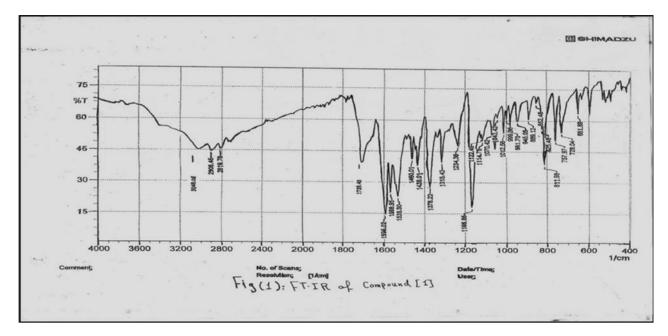


Fig (1): FT.IR of compound [1]

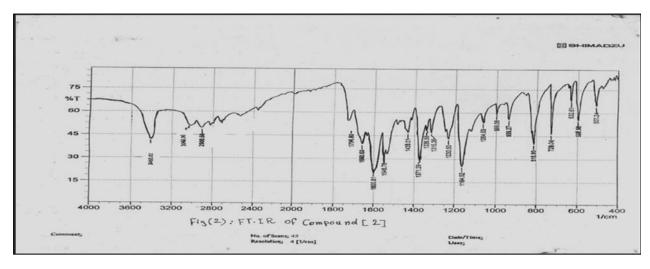
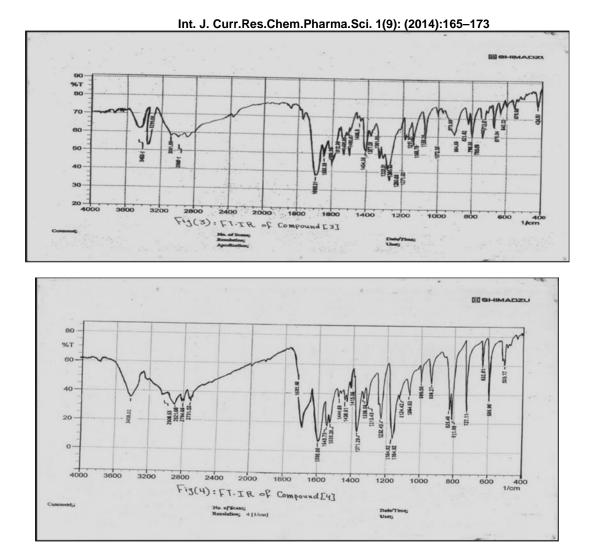
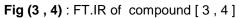




Fig (2) : FT.IR of compound [2]

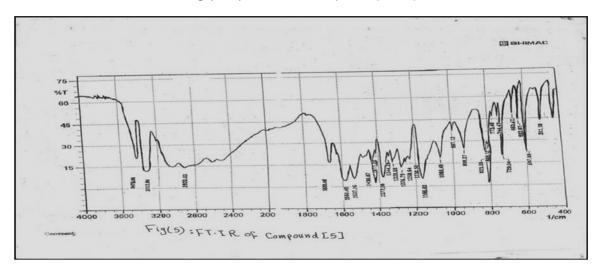
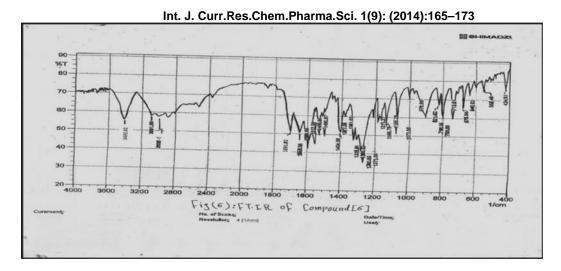
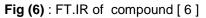




Fig (5): FT.IR of compound [5]

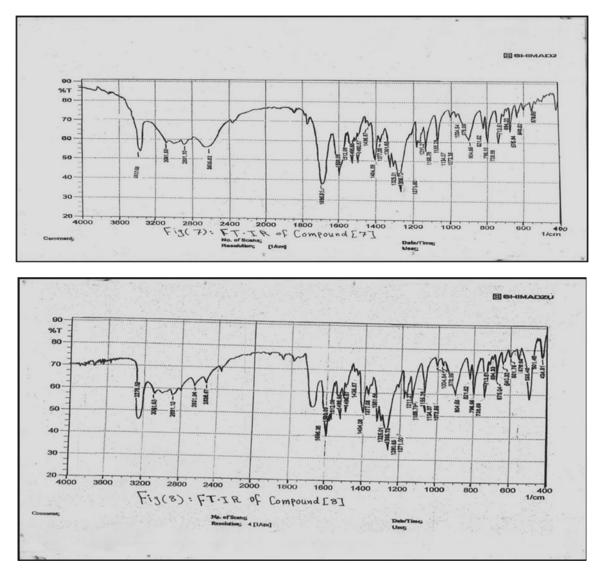
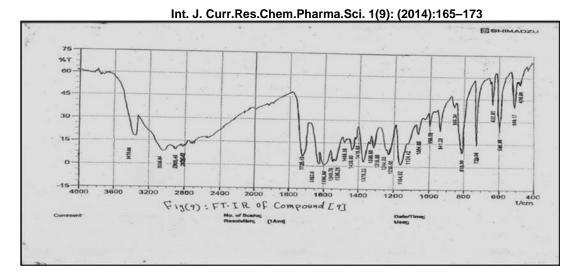
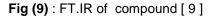




Fig (7,8): FT.IR of compound [7,8]

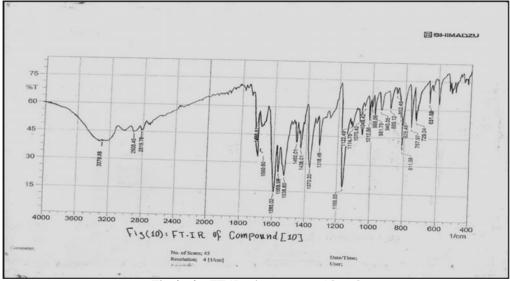


Fig (10) : FT.IR of compound [10]

Assay of antimicrobial activity ⁽¹⁵⁾:

All materials and bacteria supplied from bio-lab in college education. Antimicrobial activity was tested by the filter paper disc diffusion method against gram positive bacteria (*Staphylococcus aureus*) and gram negative bacteria (*Pseudomonas aeruginosa*), 0.1 ml of the bacterial suspensions was seeded on agar .To determine minimum inhibitory concentration(MIC) for each compounds[1-10] were ranged between (6-30)mg/ml by dissolved in (DMSO) and preparation 0.1mg/ml standard antibiotic amoxyline as positive standardand reference .

The positive results or sensitivity were established by the presence of clear zone of inhibition around active compounds which were measured with a meter rule and diameters were recorded based on (mm), the assays were performed with two replicates .Generally, The results showed that the compounds[1-10] have good inhibitory effect against tested bacteria as compared with synthetic antibiotic Amoxyline.

Table (4) showed the zone of inhibition of the compounds[1-10] in this study ranged (from 30 to 6) mm. From results, we noted that the compounds[7, 8] have higher antibacterial activity against *S.aureus and P.aeruginosa* is due to the presence more than one of nitrogen atoms(N) and sulfur atom in their structures .,these compounds become more effective in precipitating proteins on bacteria cell walls.

Int. J. Curr.Res.Chem.Pharma.Sci. 1(9): (2014):165–173 Table(4):Antibacterial activity of the compounds[1-10].

Compounds[1-10]	diameter of zone(mm)				
	G+: Staphylococcus. aureus	G-: Pseudomonas. aeruginosa			
compounds[1]	12	6			
compounds[2]	16	10			
compounds[3]	18	12			
compounds[4]	20	14			
compounds[5]	22	16			
compounds[6]	22	16			
compounds[7]	30	22			
compounds[8]	28	24			
compounds[9]	24	18			
compounds[10]	24	18			
Amoxyline**	36	28			
*Minimum Inhibitory concer **Amoxyline (0.1mg/ml).	ntration (MIC)of compounds[1] (5mg/r	nl).			

References

- 1. Magherita . B , Silvano .C & Stefano . D ., (2012) , Arkivoc , ix , 262-279 .
- 2. Nagham . M . Aljamali , (2012) ., As . J . ExpChem.,7,1,52-56.
- Singh. V , Yashovardhan . S &Sudhir . K ., (2011) , Int. J . Chem Tech .Res ., 3,2,892-900 .
- Maher . A, Sameh . A &Fakhry .A., (2012) , Global .J . Health .Sci., 4,1,174-183 .,Cited by Ivsl of Iraq *.
- Ashraf .M , Abelgalil . A , Musaed .A , Husam . R , Mosa . O & Mohammed .A ., (2011) , American . J . Biochem. & Biotech ., 7,2,43-54., Cited by Ivsl of Iraq* .
- Gowramma .B , Jubie . S , Kalirajan . R , Gomathy . S &Elango . K ., (2009) , Int .J. Pharmtech . Res .,1,2,347-352 .
- Arshiya .F , Sayaji . R &Venkateshwarlu . G.,(2011) , Int . J. Chem Tech . Res .,3,4,1769-1780 .
- Wagnat . W , Sherif . M , Rafat .M &Amr . S., (2012) , Int. J . Org Chem .,2, 321-331
- 9. Nagham . M.Aljamali., (2010)., J.Babylone .Sci .,18,3,925-942 .
- 10. Gernot . A & Wolfgang .H ., (2008) , Molbank . J., M569 , 1-4 .
- 11. Girija . S , Tarjeet .S & Ram. L ., (2013) , Arkivoc , ii , 213-219 .
- 12. Kamal . M , Ahmed . M &Hatem .A ., (2006) , J . Chinese .Chem . Soci ., 53 , 873 880 .
- 13. Roshan . A , Zia . M &Rukhsana .J ., (1996) ., Tr . J . Chem ., 20 , 186 - 193 .
- 14. Vijay . V , Gandhale . S & Shinde . N ., (2012) ,

© 2014, IJCRCPS. All Rights Reserved

Der . Pharma. Chemica , 4,1, 320-328 .

15. Nagham . M. Aljamali ., (2014) , Int . J .Pharm and Pharmcl ., 3 ,2 ,149-135.