INTERNATIONAL JOURNAL OF CURRENT RESEARCH IN CHEMISTRY AND PHARMACEUTICAL SCIENCES (p-ISSN: 2348-5213: e-ISSN: 2348-5221)

www.ijcrcps.com

DOI:10.22192/ijcrcps

Coden: IJCROO(USA)

Volume 3, Issue 12 - 2016

Research Article

DOI: http://dx.doi.org/10.22192/ijcrcps.2016.03.12.003

A novel series of Gold(III)-mesitylene-arylazoimidazole and diphosphine complexes: Synthesis and Spectroscopic analysis.

Prithwiraj Byabartta

Inorganic Chemistry Research Laboratory, Department of Chemistry, Jogesh Chandra Chaudhuri College, 30- Prince Anwar Shah Road, Kolkata-700033; *Corresponding Author: pribatta@rediffmail.com

Abstract

The reaction between PPN[AuCl₄] and [Hg(mes)₂] gives the anionic complex *cis*-PPN[Au(mes)₂Cl₂] (1) and [Hg(mes)Cl] as sideproduct. Complex 1 is a precursor to other compounds both neutral and cationic. The twelve new complexes, cis-[Au(mes)₂(L–L)]X (L–L=RaaiR^(1a-1i), L–L=dppe (3) L–L=dppm (2) L–L=dppa (4), X=SO₃CF₃) are charecterised by ES/MS, IR and multinuclear NMR (¹H, ¹³C, ¹⁹F, ³¹P) spectroscopic studies. In addition by dimentional NMR studies as ¹H ¹H COSY and ¹H ¹³C HMQC permit a complete assignment of the complexes in the solution phase.

Keywords: Gold(III), 1-alkyl-2-(arylazo)imidazole, ¹H, ¹³C, ¹⁹F, ³¹P COSY, HMQC NMR.

1. Introduction

Gold(III) complexes with two gold-carbon bonds have been known for a long time, particularly those containing methyl or pentafluorophenyl groups as ligands [1, 2, 3, The traditional synthesis with Grignard or 4]. organolithium reagents lead generally to very low yields. Improved synthetic methods involved the use of organotin, organothalium [6] and organomercury [7,8] reagents or, in a few cases, the oxidative addition of halogen to the corresponding organogold(I) complexes $[AuR_2]^{-}$ [9,10]. We have been reporting on the chemistry of mesityl gold(I) derivatives [11,12,13]. The radical mesityl $[(C_6H_2Me_3)-]$ can act as a simple (terminal) ligand or as a bridge between two metalic centres affording a three-centre two-electron bond. Mesityl gold(I) derivatives of the type [AuRL] have proven to be useful precursors to homo- and hetero-polynuclear compounds that have displayed interesting metal-metal interactions. We wanted to extend this chemistry to gold(III) complexes and study the behaviour of such compounds. Gold(III) componds containing the mesityl

group as a terminal ligand have been obtained by reaction between the Grignard reagent and [AuCl₂(L-[L-L=bipy (2,2 -bipyridine), L)1CIO₄ phen (1, 10 phenantroline) and by oxidative addition of halogens to mesityl qold(I) Q[Au(mes)X] complexes (Q=P(CH₂Ph)PPh₃, N(PPh₃)₂) [11]. However, both methods have restrictions. It was, therefore, desirable to obtain a mesityl gold(III) compound that could be used as a precursor to other gold(III) products in a wider range. In this paper we describe the synthesis of the compound *cis*-PPN[Au(mes)₂Cl₂] (1) (PPN⁺: N(PPh₃)₂, bis(triphenylphosphine)iminium)) which is obtained via the organomercury reagent [Hg(mes)₂] [1-7, 27-57] according to an earlier procedure for transferring one or two aryl groups to gold(III) centres [7,8,16,17,18,19,23,24-26, 58-96]. Complex 1 behaves as a precursor to other mesityl gold(III) compounds both neutral and cationic. In this article we have synthesised a novel series of Gold(III) mesityline square planar complexes with arylazoimidazole linkage and the complexes were well charecterised by CHN analysis, IR, multinuclear NMR and ESI mass spectrophotometrically.

2. Experimental

2.1. Materials and Physical measurements

Instrumentation and general experimental techniques were as described earlier [11]. Proton and ³¹P{¹H}-NMR were described in detain in the Experimental Section. All the reactions were performed at room temperature (r.t.) except that of PPN[AuCl₄] with Hg(mes)₂. Reactions of 1 with silver salts must be carried out avoiding light exposure until the silver chloride is removed. The starting materials PPN[AuCl₂] and [Hg(mes)₂] were prepared as described previously. PPN[AuCl₄] was prepared by addition of stoichiometric Cl₂ to a solution of PPN[AuCl₂] in dichloromethane. All other chemicals , ligand(RaaiR) [20-23] and organic solvents used for preparative work were of reagent grade (SRL, Sigma Alhrich). Microanalytical data (C, H, N) were collected using a Perkin Elmer 2400 CHN instrument. I.R. spectra were obtained using a Perkin Elmer spectrophotometer (using KBr disks, 4000-350 cm⁻¹). The ¹H nmr spectra in CDCl₃ were obtained on a Bruker 500 MHz FT NMR spectrometer using SiMe₄ as internal reference, CFCl₃ (external ¹⁹F). Mass spectra were recorded on VG Autospec FAB technique using 3-nitrobenzyl(NBA) as matrix.

Caution: perchlorate salts of metal complexes with organic ligands are potentially explosive. So here all are of troflate salts.

2.2.1. cis-PPN[Au(mes)₂Cl₂] (1)

To PPN[AuCl₄] (1.097 g, 1.25 mmol) in acetone (50 ml) was added [Hg(mes)₂] (1.369 g, 3.12 mmol). After heating at reflux for 1.5 h, the yellow mixture became a yellow solution by solubilisation of the organomercury reagent. Heating for a further 4.5 h afforded a colourless solution. The reaction was usually stopped after 10 h of refluxing (when decomposition to metallic gold started to be noticed). The solution was cooled and filtered through Celite. The almost colourless solution was concentrated in vacuo to ca. 5 ml, and Et₂O (20 ml) added to precipitate 1 as a white solid. The analytical sample was purified by recrystallization from dichloromethane-ether. The Et₂O filtrate was concentrated in vacuo to ca. 5 ml, and *n*-hexane (20 ml) added to afford [Hg(mes)Cl] as a white solid.

2.2.2. cis-[Au(mes)₂(L-L)]X (L-L=RaaiR[^] (1a-1i), L-L=dppe (3) L-L=dppm (2) L-L=dppa (4), X=SO₃CF₃,)

To separate solutions of cis-PPN[Au(mes)₂Cl₂], **1** (0.1047 g, 0.1 mmol) in dichloromethane (20 ml) solutions of AgOTf (0.0514 g, 0.2 mmol) to obtain *cis*-PPN[Au(mes)₂(OTf)₂]. After removal of AgCl and PPN[X]

(X= TfO) in diethyl ether (20 ml) respectively added the ligand, HeaaiMe (0.0186 g, 0.1 mmol, 1a), MeaaiMe (0.020 g, 0.1 mmol, 1b), ClaaiMe (0.0220 g, 0.1 mmol, 1c), HaaiEt (0.020 g, 0.1 mmol, 1d), MeaaiEt (0.0214 g, 0.1 mmol, 1e), ClaaiEt (0.0235 g, 0.1 mmol, 1f), HaaiBz (0.0262 g, 0.1 mmol, 1g), MeaaiBz (0.0276 g, 0.1 mmol, 1h), ClaaiBz (0.0297 g, 0.1 mmol, 1i), dppe (0.0398 g, 0.1 mmol, 3), dppm (0.0384 g, 0.1 mmol, 2), dppa (0.0385 g, 0.1 mmol, 4) were added. All these compounds (1a-1i, 2, 3, 4) precipitated in the media and were separated by filtration as white solids for 2, 3, 4 and orange for 1a-1i complexes.

Analysis for cis-[Au(mes)₂(HaaiMe)](OTf), 1a, $[C_{29}H_{32}N_4Au](SO_3F_3)$, Calc(found): C, 45.14 (45.8), H, 4.2 (4.4), N, 7.36(7.30); IR v(N=N) 1370 v(C=N) 1590 v(mes) 1586(w), 849(m,Br), v(OTf) 1260(br),1225(s), 1156(s), ES/MS, 770 [M⁺], 620 [M-OTf]; Proton n.m.r., ¹H, ppm, 2.11(o-Mes), 2.21(p-Mes), 6.66, 6.70(m-Hmes), 8.07(d, J = 8Hz, H(7,11)), 8.01(d, J=6.5Hz), H(8,10)), 7.09(m, 9-H), 7.26(d, J=6Hz, H(4)), 7.34(d, J=5Hz, H(5)), 1.5(s, N-Me); Fluorine n.m.r., ¹⁹F{¹H}, ppm ¹³C {¹H}, ppm ,134.5(C2), 124(C4), 125(C5), -78. 125.3(C7,11), 129.2(C8,10), 134(C6), 42 (Me Gr.); Analysis for cis-[Au(mes)₂(MeaaiMe)](OTf), 1b. [C₃₀H₃₄N₄Au](SO₃F₃), Calc(found): C, 45.94 (45.8), H, 4.3 (4.4), N, 7.1(7.1); IR v(N=N) 1360 v(C=N) 1590 v(mes) 1586(w), 849(m,Br), v(OTf) 1260(br), ES/MS, 784 [M⁺], 634 [M-OTf]; Proton n.m.r., ¹H, ppm, 2.1(o-Mes), 2.2(p-Mes), 6.6, 6.7(m-H-mes), 8.0(d, J = 8Hz), H(7,11)), 8.1(d, J=6Hz, H(8,10)), 7.2(d, J=6Hz, H(4)), 7.3(d, J=5Hz, H(5)), 1.5(s, N-Me); Fluorine n.m.r., $^{19}F\{^{1}H\}, \ ppm$, -78, ^{13}C $\{^{1}H\}, \ ppm$,134 (C2), 124(C4), ¹⁹F{¹H}, ppm , -78, 125(C5), 125 (C7,11), 129 (C8,10), 134(C6), 44 (Me Gr.); Analysis for cis-[Au(mes)₂(ClaaiMe)](OTf), **1c**, [C₂₉H₃₁N₄AuCl](SO₃F₃), Calc(found): C, 43.4 (43.5), H, 3.9 (4.0), N, 6.96(7. 0); IR v(N=N) 1370 v(C=N) 1590 v(mes) 1589(w), 849(m,Br), v(OTf) 1260(br), ES/MS, 804.5 [M⁺], 654.5 [M-OTf]; Proton n.m.r., ¹H, ppm, 2.17(o-Mes), 2.29(p-Mes), 6.66, 6.7(m-H-mes), 8.0(d, J = 8Hz, H(7,11)), 8.0(d, J=6Hz, H(8,10)), 7.2(d, J=6Hz, H(4)), 7.34(d, J=5Hz, H(5)), 1.5(s, N-Me); Fluorine n.m.r., $^{19}F_1^{1}H_1^{1}$, ppm , -78, ^{13}C { $^{1}H_1^{1}$, ppm,134 (C2), 124(C4), 125(C5), 125.3(C7,11), 129 (C8,10), 134(C6), 46 (Me Gr.); Analysis for cis-[Au(mes)₂(HaaiEt)](OTf), 1d, [C₃₀H₃₄N₄Au](SO₃F₃), Calc(found): C, 45.94 (45.8), H, 4.3 (4.4), N, 7.1(7.1); IR v(N=N) 1360 v(C=N) 1590 v(mes) 1586(w), 849(m,Br), ES/MS, 784 [M⁺], 634 [M-OTf]; Proton n.m.r., ¹H, ppm, 2.1(o-Mes), 2.2(p-Mes), 6.6, 6.7(m-H-mes), 8.0(d, J = 8Hz, H(7,11)), 8.1(d, J=6Hz, H(8,10)), 7.9(m, 9-H), 7.2(d, J=6Hz, H(4)), 7.3(d, J=5Hz, H(5)), 1.5(s, N-Me); Fluorine n.m.r., ¹⁹F{¹H}, ppm , -78, ¹³C {¹H}, ppm ,134 (C2), 124(C4), 125(C5), 125 (C7,11), 129 (C8,10), 134(C6), 50,44 (Et Gr.); Analysis cis-[Au(mes)₂(MeaaiEt)](OTf), 1e. for [C₃₁H₃₆N₄Au](SO₃F₃), Calc(found): C, 46.64 (46.8), H, 4.5 (4.4), N, 7.0(7.0); IR v(N=N) 1350 v(C=N) 1599 v(mes) 1586(w), 849(m,Br), v(OTf) 1260(br), ES/MS, 798 [M⁺], 648 [M-OTf]; Proton n.m.r., ¹H, ppm, 2.18(o-

Int. J. Curr. Res. Chem. Pharm. Sci. (2016). 3(12): 12-20

Mes), 2.27(p-Mes), 6.61, 6.71(m-H-mes), 8.0(d, J =7Hz, H(7,11)), 8.1(d, J=6Hz, H(8,10)), 7.2(d, J=6Hz, H(4)), 7.3(d, J=5Hz, H(5)), 1.5(s, N-Me); Fluorine n.m.r., ${}^{19}F{}^{1}H{}$, ppm , -78, ${}^{13}C{}{}^{1}H{}$, ppm,134 (C2), n.m.r., ¹⁹F{¹H}, ppm , -78, 124.5(C4), 125(C5), 125 (C7,11), 129.7 (C8,10), (Et Gr.); Analysis 134(C6), 44,49 for cis- $[Au(mes)_2(ClaaiEt)](OTf), 1f, [C_{30}H_{33}N_4AuCl](SO_3F_3),$ Calc(found): C, 43.94 (43.8), H, 4.0 (4.0), N, 6.8(6.9); IR v(N=N) 1360 v(C=N) 1599 v(mes) 1589(w). 859(m,Br), v(OTf) 1260(br), ES/MS, 818.5 [M⁺], 6668.5 [M-OTf]; Proton n.m.r., ¹H, ppm, 2.1(o-Mes), 2.2(p-Mes), 6.6, 6.7(m-H-mes), 8.0(d, J = 8Hz, H(7,11)), 8.1(d, J=6Hz, H(8,10)), 7.2(d, J=6Hz, H(4)), 7.3(d, J=5Hz, H(5)), 1.5(s, N-Me); Fluorine n.m.r., $^{19}F\{^{1}H\}$, ppm , -78, ^{13}C { $^{1}H\}$, ppm ,134 (C2), 124(C4), 125.5(C5), 125 (C7,11), 129.6 (C8,10), 134(C6), 44,49 (Et Gr.); Analysis for cis-[Au(mes)₂(HaaiBz)](OTf), 1g, [C₃₅H₃₆N₄Au](SO₃F₃), Calc(found): C, 49.64 (49.8), H, 4.3 (4.24), N, 6.6(6.5); IR v(N=N) 1366 v(C=N) 1596 v(mes) 1586(w), 849(m,Br), v(OTf) 1267(br), ES/MS, 846 [M⁺], 696 [M-OTf]; Proton n.m.r., ¹H, ppm, 2.1(o-Mes), 2.2(p-Mes), 6.66, 6.7(m-H-mes), 8.0(d, J = 7Hz, H(7,11)), 8.1(d, J=5Hz, H(8,10)), 7.9(m, 9-H), 7.2(d, J=6Hz, H(4)), 7.3(d, J=5Hz, H(5)), 4.5, 7.1-7.3(s, N-Bz); Fluorine n.m.r., ¹⁹F{¹H}, ppm , -78, ¹³C {¹H}, ppm ,134 (C2), 124(C4), 125(C5), 125.5 (C7,11), 129 (C8,10), 134(C6), 44,130-132 (Bz Gr.); Analysis for cis-[Au(mes)₂(MeaaiBz)](OTf), 1h. [C₃₆H₃₈N₄Au](SO₃F₃), Calc(found): C, 50.24 (50.8), H, 4.3 (4.4), N, 6.5(6.4); IR v(N=N) 1366 v(C=N) 1597 v(mes) 1586(w), 849(m,Br), v(OTf) 1266(br), ES/MS, 864 [M⁺], 710 [M-OTf]; Proton n.m.r., ¹H, ppm, 2.1(o-Mes), 2.2(p-Mes), 6.6, 6.7(m-H-mes), 8.0(d, J =8Hz, H(7,11)), 8.1(d, J=6Hz, H(8,10)), 7.2(d, J=6Hz, H(4)), 7.3(d, J=5Hz, H(5)), 4.5, 7.1-7.3(s, N-Bz); Fluorine n.m.r., ¹⁹F{¹H}, ppm , -78, ¹³C {¹H}, ppm ,134.5 (C2).

Results and Discussion

3.1. Synthesis and formulation

124(C4), 125(C5), 125 (C7,11), 129.6 (C8,10), 134(C6), 44,130-132(Bz Gr.); Analysis for cis-[Au(mes)₂(ClaaiBz)](OTf), **1i**, $[C_{35}H_{35}N_4Au](SO_3F_3),$ Calc(found): C, 47.7 (47.8), H, 3.9 (3.8), N, 6.31(6.2); IR v(N=N) 1365 v(C=N) 1597 v(mes) 1586(w), 849(m,Br), v(OTf) 1260(br), ES/MS, 880.5 [M⁺], 730.5 [M-OTf]; Proton n.m.r., ¹H, ppm, 2.11(o-Mes), 2.22(p-Mes), 6.62, 6.7(m-H-mes), 8.0(d, J = 8Hz, H(7,11)), 8.1(d, J=6Hz, H(8,10)), 7.9(m, 9-H), 7.2(d, J=6Hz, H(4)), 7.3(d, J=5Hz, H(5)), Fluorine n.m.r., ${}^{19}F{}^{1}H{}$, ¹³C {¹H}, ppm ,134 (C2), 124.5(C4), ppm , -78, 125(C5), 125 (C7,11), 129 (C8,10), 134(C6), 44, 130-133 (Bz Gr.); Analysis for cis-[Au(mes)₂(dppm)](OTf), **2**, [C₄₄H₄₈Au](SO₃F₃), Calc(found): C, 54.1 (54.0), H, 4.6 (4.4), IR v(C=C) 1590 v(mes) 1586(w), 849(m,Br), v(OTf) 1260(br), FAB, 819[M⁺], Proton n.m.r., ¹H, ppm, 2.1(o-Mes), 2.2(p-Mes), 6.6, 6.7(m-Hmes), 7.1-7.3(m, H(dppm)), 2.5; ³¹P{¹H}, ppm, -25.5, Fluorine n.m.r., ${}^{19}F{}^{1}H{}$, ppm , -78, ¹³C {¹H}, ppm ,130.4-132.6, 43, (C-dppm), 126.6 (m-H-mes); Analysis for cis-[Au(mes)₂(dppe)](OTf), **3**, [C₄₅H₅₀Au] (SO₃F₃), Calc(found): C, 56.1 (56.0), H, 5.2 (5.4), IR v(C=C) 1630 v(mes) 1586(w), 849(m,Br), v(OTf) 1260(br), FAB, 832[39%,M⁺], Proton n.m.r., ¹H, ppm, 2.1(o-Mes), 2.2(p-Mes), 6.3, 6.6(m-H-mes), 2.5; 7.1-7.3(m, H(dppe)), ${}^{31}P{}^{1}H$, ppm , 45.1, Fluorine n.m.r., ${}^{19}F{}^{1}H$, ppm , -78, ${}^{13}C{}^{1}H$, ppm ,130.9-132.6, 40, (Cdppe), 126.6 (m-H-mes); Analysis for cis-[Au(mes)₂(dppa)](OTf), **4** $[C_{43}H_{47}Au]$ (SO₃F₃), Calc(found): C, 54.1 (54.0), H, 4.6 (4.4), IR v(C=C) 1600 v(mes) 1596(w), 859(m,Br), v(OTf) 1250(br), FAB, 820[M⁺], Proton n.m.r., ¹H, ppm, 2.1(o-Mes), 2.2(p-Mes), 6.3 (m-H-mes), 2.5; 7.1-7.3(m, H(dppa)), Fluorine n.m.r., ¹⁹F{¹H}, ppm , -78, ¹³C {¹H}, ppm ,130.9-132.6, 43, (C-dppa), 124.6 (m-H-mes).

Scheme 1

The reaction in refluxing acetone of PPN[AuCl₄] with Hg(mes)₂ in a molar ratio 1:2 for 10 h leads to the formation of *cis*-PPN[Au(mes)₂Cl₂] together with [Hg(mes)Cl] in high yield. Both compounds are easily separated and purified by fractional crystallization. Attempts to substitute more chloride anions by mesityl groups following the method described in Scheme 1 failed. Reaction of *cis*-PPN[Au(mes)₂Cl₂] followed by arylazoimidazole in dichloromethane medium leads to $[Au(mes)_2(RaaiR)]$ (**1a-1i**), $[RaaiR' = p-R-C_6H_4-N=N C_3H_2$ -NN-1-R[/], abbreviated as N,N[/]-chelator, where N(imidazole) and N(azo) represent N and N', respectively; R = H, Me, CI and R' = Me, CH_2CH_3 , CH_2Ph , OSO_2CF_3 is the triflate anion]. All the complexes are supported by elemental analysis and well charecterised by IR, multinuclear NMR (¹H, ¹³C, ³¹P, ¹⁹F, COSY, HMQC) and ESI mass spectrophotometrically

3.2. Spectral study

The IR spectra show absorptions from the mesityl ligand for all the compounds. The intense stretching at 1365-1370 and 1570-1580 cm⁻¹ with concomitant loss of v(Au-Cl) at 260-298 cm⁻¹. They are assigned to v(N=N) and v(C=N), respectively. The IR spectra of the starting material *cis*-PPN[Au(mes)₂Cl₂] (1) shows two absorptions at 291 (s) and 278 (s) that can be assigned to two active bands (Au–Cl) (a₁, b₁) of the *cis*-isomer (C_{2v} symmetry).

Their ¹H-NMR spectra are as expected showing three signals due to the mesityl ligand (protons from the *ortho-* and *para*-methyl groups and protons in *meta*). For the phosphine complexes (**2** and **3**) the assigned signal for *m*-H of one mesityl group is observed as a doublet (${}^{5}J_{P-H}=3.9$ Hz) due to the coupling with the phosphine in *trans*. All these data is consistent with the proposal of square-planar complexes being the *cis* isomers. The signals assigned to the mesityl ligand in the ¹H-NMR spectra of the neutral compounds are very similar to those found for **1**.

The ³¹P{¹H}-NMR of the compounds containing bidentate phosphines shows a singlet but at very different chemical shifts. The ligand show a singlet at -22.2(dppm), -12.2(dppe) and the parent dichloro gold complexes show a singlet at 24.7(Au₂dppmCl₂), 32(Au₂dppeCl₂). But due to the presence of mesityl group in the case of **3** (L–L=dppe] the signal appears at 45.1 ppm (consistent with two phosphorus atoms coordinated to a gold(III) centre). For **2** (L–L=dppm) the resonance is highly shielded (–25.5 ppm) and explained on the basis of the constrain imposed on the four-membered phosphorus chelate ring as described for other metallic complexes [27]. Fluorine n.m.r., ¹⁹ F $\{^{1}H\}$, (measured in CDCl₃) is informative of the present series of complexes. All shows a singlet peak at -78 due to the presence of triflate ion.

The ¹³C (H)NMR spectrum provides direct information about the carbon skeleton of the molecule. Assignment of different resonant peaks to respective carbon atoms are done for all complexes. Considering one arylazoimidazole moities there are different carbon atoms in the molecule which gives different peaks in the ¹³C (H)NMR spectrum. Carbon atoms neighbouring to the nitrogen atom shifted to downfield due to an increased electron density resulting from the presence of electronegative nitrigen atom and pi electron delocalization in the magnetic environment. The non-protonated carbon atoms at C(2) and C(6) of the arylazoimidazole moiety is shifted farthest downfield in the spectrum effected by the magnetic interaction of two bulky phenyl rings environment and the methyl, ethyl, benzyl substituted imidazole rings and the pi electron delocalization on the =N-CC=Nand =N-C-C=C-C-.

The COSY spectrum reveals the ¹H-¹H coupling interactions in the molecule. The cross peaks along both the sides of the diagonal identify the nuclei that are coupled to each other. On the contrary, the protons that are decoupled from the adjacent ones due to the lack of α -protons will show no correlation in the spectrum. Extending horizontal and vertical lines from δ = 7.32 ppm [C(4)H] and 7.68 ppm [C(5)H] encounter cross peaks at δ = 7.12 ppm and 7.23 ppm, where the C(7)H and C(11)H resonances are merged into multiplets along with the phenyl ring proton resonances. The comperative weaker coupling interactions of mesitylene ortho and para methyl protons and the meta proton with the far apart positioned C(4)H and C(5)H protons of the imidazole moity are shown by the poorly resolved cross peaks at δ = 7.32 ppm and 7.83 ppm.

 $^{1}H-^{13}C$ The heteronuclear multiple-quantum coherence (HMQC) spectrum provides information regarding the interaction between the protons and the carbon atoms to which they are directly attached. In the present complexes, the absence of any contours at $\delta = 147.12$, 160.76, 155.67 ppm and 157.68 ppm assign them to the C(2), C(6), C(ipso-mesityl) and C(ortho.para) carbon atoms respectively. This is because, they belong to the non-protonated carbon atoms on the imidazole, phenyl and mesityl rings. So they are unable to show any direct ¹H-¹ heteronuclear multiple-quantum coherence.

Int. J. Curr. Res. Chem. Pharm. Sci. (2016). 3(12): 12-20

ppm (f2)

0.0

5.0

FIGURE 2. Complete ¹H NMR and ¹³C (H) NMR of complex (2b).

4. Conclusions

This work describes the isolation of $[Au(mes)_2(RaaiR')](OTf)$ and their spectral and elemental characterisation. ¹⁹F {¹H} NMR as well as ³¹P {¹H} NMR is helpful to assign the solution structure of the complexes. In the ¹H-¹H COSY spectrum of the present complexes, as well as the contour peaks in the ¹H-¹³C HMQC spectrum in the present complexes, helps to assign the dimentional relationship among proton proton and proton carbon.

Acknowledgments

The author is grateful to Department of Science and Technology (DST), Government of India for providing the financial assistance. (FAST TRACK Grand No. **SERB/F/4888/ 2012-13 Dated 30.11.2012, SR/FT/CS-102/2009**, Project Title: GOLD(I) & GOLD(III) ARYLAZOIMIDAZOLE (N, N DONAR) & OXO COMPLEXES : SYNTHESIS, STRUCTURE, SPECTRAL STUDY, ELECTROCHEMISTRY AND CHEMICAL REACTIVITY)

References

- Schmidbaur H., Grohmann A.and Olmos M.E.. In: Gold: Progress in Chemistry, Biochemistry and Technology, Wiley, Chichester (1999), p. 710.
- [2]. Usón R. and Laguna A.. Coord. Chem. Rev. 70 (1986), p. 1.
- [3]. Laguna A. and. Gimeno. M.C *Trends Organomet. Chem.* **1** (1994), p. 231.
- [4]. Puddephatt R.J.. In: Wilkinson G., Stone F.G.A.and Abel E.W., Editors, (1st edn ed.), *Comprehensive Organometallic Chemistry* 2, Pergamon Press, Oxford (1982), p. 765.
- [5]. Paul M. and Schmidbaur H.. Z. Naturforsch. 496 (1994), p. 647.
- [6]. Usón R., Laguna A., Laguna M. and Fernandez E.. *Inorg. Chim. Acta* **45** (1980), p. L177.
- [7]. Vicente J., Chicote M.T., Arcas A. and Artigao M.. *Inorg. Chim. Acta* 65 (1982), p. L251.
- [8]. Vicente J., Chicote M.T., Arcas A., Artigao M. and Jiménez. R. *J. Organomet. Chem.* **247** (1983), p. 123.
- [9]. Usón R., Laguna A., Laguna M. and Abad M. J. Organomet. Chem. 249 (1983), p. 437.
- [10]. Usón R., Laguna A., Garcia J. and Laguna M.. Inorg. Chim. Acta 37 (1979), p. 201.
- [11]. Contel M., Jiménez J., Jones P.G., Laguna A., Laguna M., J. Chem. Soc. Dalton Trans. (1994) 2515.
- [12]. Contel M., Garrido J., Gimeno M.C., Jones P.G., Laguna A. and Laguna M. Organometallics 15 (1996), p. 4939.
- [13]. Contel M., Garrido J., Gimeno M.C., Jiménez J., Jones P.G., Laguna A. and Laguna M. Inorg. Chim. Acta 254 (1997), p. 157.

- [14]. Usón R., Laguna A., Fernández E.J., Ruiz M.E., Jones P.G., Lautner J., J. Chem. Soc. Dalton Trans. (1989) 2127.
- [15]. Laguna M., Villacampa M.D., Contel M. and Garrido J.. *Inorg. Chem.* **37** (1998), p. 133.
- [16]. Vicente J., Chicote M.T. and Bermúdez M.D.. Inorg. Chim. Acta 63 (1982), p. 35.
- [17]. Vicente J., Chicote M.T. and Bermúdez M.D. J. Organomet. Chem. 268 (1984), p. 191.
- [18]. E.C. Constable and T.A. Leese. J. Organomet. Chem. 363 (1989), p. 419; Vicente J., Bermúdez M.D., Escribano J., Carrillo M.P., Jones P.G., J. Chem. Soc. Dalton Trans. (1990) 3083.
- [19]. J. Vicente, M.D. Bermúdez and J. Escribano. Organometallics **10** (1991), p. 3380.
- [20]. Byabartta P., *Transition Met. Chem.*, **2005**, 30, 672;.
- [21]. Byabartta P., *Transition Met. Chem.*, **2005**, 30, 575.
- [22]. Byabartta P., *Transition Met. Chem.*, **2005**, 30, 902.
- [23]. Deb A. K., and Goswami S., *Polyhedron*, **1991**, 10, 1799; Misra T. K., Das D., Sinha C. Ghosh P. K. and Pal C. K., *Inorg. Chem.*, **1998**, 37, 1672.
- [24]. Chattopadhyay S., Ghosh K., Pattanayak S. and Chakravorty A., J. Chem. Soc., Dalton Trans., 2001, 1259
- [25]. Nakamoto K. In: Infrared and Raman Spectra of Inorganic and Coordination Compounds (4th ed.),, Wiley, New York (1986), p. 284.
- [26]. Greenwood N. N. and Earnshaw A., Chemistry of the Elements, Pergamon Press, Oxford, 1989, p-519.
- [27] Molter A., Rust J., Lehmann C. W. and Mohr F.,Tetra-hedron, 2012,68, 10586–10591.
- [28] Citta A., Schuh E., Mohr F., Folda A., Massimino M. L., Bindoli A., Casini A. and Rigobello M. P.,Metallomics,2013,5, 1006–1015.
- [29] Contel M., Edwards A. J., Garrido J., Hursthouse M. B., Laguna M. and Terroba R.,J. Organomet. Chem., 2000,607,129–136.
- [30] Gaillard S., Slawin A. M. Z., Bonura A. T., Stevens E. D. and Nolan S. P.,Organometallics , 2010,29, 394–402.
- [31]. Chatt, J.; Leigh, G. J.; Slade, R. W. J. Chem. Soc., Dalton Trans. 1973, 2021.
- [32]. (a) Herrmann, W. A.; Kellner, J.; Riepl, H. J. Organomet. Chem. 1990, 389, 103. (b) Toth, Z.; Joo, F.; Beck, M. T. Inorg. Chem. Acta 1980, 42, 153.
- [33]. Mohr, B.; Lynn, D. M.; Grubbs, R. H. *Organometallics* 1996, *15*, 4317.
- [34]. Hoots, J. E.; Rauchfuss, T. B.; Wrobleski, D. A. *Inorg. Synth.* 1982, *21*, 175.
- [35]. Ellis, J. W.; Harrison, K. N.; Hoye, P. A. T.; Orpen, A. G.; Pringle, P. G.; Smith, M. B. *Inorg. Chem.* 1992, *31*, 3026.
- [36]. Hoye, P. A. T.; Pringle, P. G.; Smith, M. B.; Worboys, K. J. Chem. Soc., Dalton Trans. 1993, 269.

- [37]. Darensbourg, D. J.; Beckford, F. A.; Reibenspies, J. H. *J. Cluster Sci.* 2000, *11*, 95.
- [38]. Darensbourg, D. J.; Robertson, J. B.; Larkins, D. L.; Reibenspies, J. H. *Inorg. Chem.* 1999, *38*, 2473.
- [39]. Darensbourg, D. J.; Stafford, N. W.; Joo, F.; Reibenspies, J. H. Organomet. Chem. 1995, 488, 99.
- [40]. Joo, F., Nadasdi, L.; Benyei, A. C.; Darensbourg,
 D. J. J. Organomet. Chem. 1996, 512, 45.
- [41]. Darensbourg, D. J.; Decuir, T. J.; Stafford, N. W.; Robertson, J. B.; Draper, J. D.; Reibenspies, J. H. *Inorg. Chem.* 1997, 36, 4218.
- [42]. Darensbourg, D. J.; Joo, F.; Kannisto, M.; Katho, A.; Reibenspies, J. H. Organometallics 1992, 11, 1990.
- [43]. Darensbourg, D. J.; Joo, F.; Kannisto, M.; Katho, A.; Reibenspies, J. H.; Daigle, D. J. *Inorg. Chem.* 1994, 33, 200.
- [44]. Forward, J. M.; Assefa, Z.; Fackler, J. P. J. Am. Chem. Soc. 1995, 117, 9103.
- [45]. Forward, J. M.; Fackler, J. P.; Staples, R. J. Organometallics 1995, 14, 4195.
- [46]. Forward, J. M.; Assefa, Z.; Staples, R. J.; Fackler, J. P. *Inorg. Chem.* 1996, *35*, 16.
- [47]. Assefa, Z.; McBurnett, B. G.; Staples, R. J.; Fackler, J. P. *Inorg. Chem.* 1995, *34*, 4965.
- [48]. Assefa, Z.; McBurnett, B. G.; Staples, R. J.; Fackler, J. P. *Inorg. Chem.* 1995, *34*, 75.
- [49]. Alyea, E. C.; Ferguson, G.; Kannan, S. Chem. Commun. 1998, 345.
- [50]. Nadasdi, L. Joo, F. Inorg. Chem. Acta 1999, 293, 218.
- [51]. Assmann, B.; Angermaier, K.; Paul, M.; Reide, J.; Schmidbauer, H. Chem. Ber. 1995, 128, 891.
- [52]. Daigle, D. J.; Pepperman, A. B. J. Heterocycl. Chem. 1975, 12, 579.
- [53]. Daigle, D. J.; Boudreaux, G. J.; Vail, S. L. J. Chem. Eng. Data 1976, 21, 240.
- [54]. Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; John Wiley & Sons: New York, 1986.
- [55]. Cornils, B. Org. Process Res. Dev. 1998, 2, 121-127.
- [56]. Cornils, B.; Herrmann, W. A. Aqueous-Phase Organometallic Catalysis Concepts and Applications; Wiley-VCH: Weinheim, 1998.
- [57]. Joó, F. Aqueous Organometallic Catalysis; Kluwer Academic Publishers: Dordrecht, 2001.
- [58]. Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925-11935
- [59]. Mohr, F.; Cerrada, E.; Laguna, M. *Organometallics* 2006, *25*, 644-648.
- [60]. See for example: (a) Schmidbaur, H.; Grohmann, A.; Olmos, M. E. Organogold chemistry. In Gold Progress in Chemistry, Biochemistry and Technology, Schmidbaur, H., Ed.; John Wiley & Sons: Chichester, 1999; pp 647-746. (b) Fackler, J. P., Jr. Polyhedron 1997, 16, 1-17. (c) Mohr, F.;

- Privér, S. H.; Bhargava, S. K.; Bennett, M. A. *Coord. Chem. Rev.*, in press.
- [61]. Laguna, A.; Laguna, M. Coord. Chem. Rev. 1999, 193-195, 837-856.
- [62]. Méndez, L. A.; Jiménez, J.; Cerrada, E.; Mohr, F.; Laguna, M. J. Am. Chem. Soc. 2005, 127, 852-853.
- [63]. Bhargava, S. K.; Mohr, F.; Bennett, M. A.; Welling, L. L.; Willis, A. C. *Organometallics*
- [64]. See for example: (a) Phillips, A. D.; Gonsalvi, L.; Romerosa, A.; Vizza, F.; Peruzzini, M. Coord. Chem. Rev. 2004, 248, 955-993. (b) Cornils, B.; Kuntz, E. G. J. Organomet. Chem. 1995, 502, 177-186. (c) Pinault, N.; Bruce, D. W. Coord. Chem. Rev. 2003, 241, 1-25. (d) Katti, K. V.; Hariprasad, G.; Smith, C. J.; Berning, D. E. Acc. Chem. Res. 1999, 32, 9-17, and references therein. (e) Assefa, Z.; Forward, J. M.; Grant, T. A.; Staples, R. J.; Hanson, B. E.; Mohamed, A. A.; Fackler, J. P., Jr. Inorg. Chim. Acta 2003, 352, 31.
- [65]. Darensbourg, D. J.; Ortiz, C. G.; Kamplain, J. W. *Organometallics* 2004, *23*, 1747-1754.
- [66]. Murray, H. H.; Fackler, J. P., Jr.; Porter, L. C.; Mazany, A. M. J. Chem. Soc., Chem. Commun. 1986, 321-322.
- [67] Usón, R.; Laguna, A.; Laguna, M.; Jiménez, J.; Jones, P. G. J. Chem. Soc., Dalton Trans. 1991, 1361-1365.
- [68]. Schmidbaur, H.; Grohmann, A.; Olmos, M. E. Gold, Progress in Chemistry, Biochemistry and Technology. In *Gold, Progress in Chemistry, Biochemistry and Technology*; Schmidbaur, H., Ed.; John Wiley & Sons: Chichester, 1999; p 747, and references therein.
- [69]. Assefa, Z.; Omary, M. A.; McBurnett, B. G.; Mohamed, A. A.; Patterson, H. H.; Staples, R. J.; Fackler, J. P., Jr. *Inorg. Chem.* 2002, *41*, 6274-6280.
- [70]. Fackler, J. P., Jr.; Trzcinska-Bancroft, B. *Organometallics* 1985, *4*, 1891-1893.
- [71]. Bennett, M. A.; Bhargava, S. K.; Hockless, D. C. R.; Welling, L. L.; Willis, A. C. *J. Am. Chem. Soc.* 1996, *118*, 10469-10478.
- [72]. Williams M. L., Inflammopharmacology, 2008, 16, 110–111.
- [73]. Pacheco E. A., Tiekink E. R. T. and Whitehouse M. W., Gold compounds and their applications in medicine, in Gold Chemistry: Applications and Future Directions in the Life Sciences, ed. F. Mohr, Wiley-VCH Verlag GmbH & Co. KGaA, Wienheim, 2009, pp. 283–319.
- [74]. Shaw S. F. III, Chem. Rev. , 1999, 99, 2589– 2600.
- [75]. Schmidbaur H., Cronje S., Djordjevic B. and Schuster O., Chem. Phys., 2005, 311, 151–161.
- [76]. Bond ž i A. M., Lazarevi -Pa š ti T. D., Bond ž
 i B. P., olovi M. B., Jadranin M. B. And Vasi
 V. M., New J. Chem. , 2013, 37, 901–908.
- [77]. Gliši B., Djuran M. I., Stani Z. D. and Rajkovi S., Gold Bull. , 2013, DOI:

Int. J. Curr. Res. Chem. Pharm. Sci. (2016). 3(12): 12-20

- [78] Fricker S. P., Gold Bull., 1996, 10.1007/s13404-013-0108-7. 29,53–60.
- [79] Tiekink E. R. T., Gold Bull. , 2003, 36, 117–124.
- [80]. Uson R, Laguna A., Laguna M.. Jimenez J, and Durana E., Inorg,Chim. Acta, 1990, 168, 89.
- [81] Puddephatt R.J.. In: G. Wilkinson, R.D. Gillard and J.A. McCleverty, Editors, Comprehensive Coordination Chemistry vol. 2, Pergamon, Oxford, 1987
- [82] M. Contel, J. Garrido, M.C. Gimeno, P.G. Jones, A. Laguna and M. Laguna. Organometallics, 1996, 15, p. 4939. M.C. Gimeno and A. Laguna. Chem. Rev. 1997, 97, p. 511.
- [83] Schmidbaur H., Editor, Gold: Progress in Chemistry, Biochemistry and Technology, John Wiley and Sons, Chichester, 1999;
- [84] Deb A. K., and Goswami S., Polyhedron, 1991, 10, 1799; Misra T. K., Das D., Sinha C., Ghosh P. K. and Pal C. K., Inorg. Chem., 1998, 37, 1672;
- [85] Jemmis E. D., Subramanian G., Nowek A., Gora R. W., Sullivan R. H. and Leszczynski J., J. Mol. Struct., 2000, 556, 315.

- [86] Chattopadhyay S., Ghosh K., Pattanayak S. and Chakravorty A., J. Chem. Soc., Dalton Trans., 2001, 1259.
- [87] Greenwood N. N. andEarnshaw A., Chemistry of the Elements, Pergamon Press, Oxford, 1989, p-519.
- [88] Chakravarty A. R. and Chakravorty A., J. Chem. Soc., Dalton Trans., 1983, 961.
- [89] Murray H.H., Iwen W. I, Sherman S.E., Greaney M.A., Edksen KA., Carstense B, A, Halhbert T R and Sliefel E.I., Angrew. Chem, 1995, 34, 841.
- [90] Cerrada E., Fernandez EJ., Gimeno M.C., Laguna A., Laguna M., Termba R. and Villacampa M,D., J. Organomet, Chem., 1995, 492, 105.
- [91] Uson R, Laguna A. and Laguna M., Inorg. Synth..,1989, 26, 85.
- [92] Uson R. and Laguna A., Organomet. Synth., 1985, 3, 325.
- [93] Uson R., Laguna A., Laguna M., Jilnenez J., Gemez M.P., Slfinz A. and Jones P.G., J. Chem Soc., Dalton Trans., 1990, 3457.

How to cite this article:

Prithwiraj Byabartta. (2016). A novel series of Gold(III)-mesitylene-arylazoimidazole and diphosphine complexes: Synthesis and Spectroscopic analysis. Int. J. Curr. Res. Chem. Pharm. Sci. 3(12): 12-20. **DOI:** http://dx.doi.org/10.22192/ijcrcps.2016.03.12.003