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Introduction

Cellulose is the major polymeric component of plant
matter and is the most abundant polysaccharide on
Earth. It has been estimated that 7.2 x 1011 tonnes
of cellulose is reserved in plants and that the yearly
production of cellulose is 4 x 1010 tonnes
(Coughlan, 1985). The half-life of cellulose at
neutral pH in the absence of enzymes is estimated
to be several million years so that microbial activity
is responsible for most of the turnover of the carbon
in cellulose although fire also plays a role
(Falkowski et al. 2000).

Some cellulolytic bacteria and fungi work together
with related microorganisms to convert insoluble
cellulosic matter to soluble sugars (cellobiose and
glucose), which are then assimilated by the cell. In
order to catalyze this process, the cellulolytic
microbes are able to produce several different
enzymes, known as cellulases. Cellulolytic bacteria
have been widely explored for cellulase production

owing to their high growth rate, expression of
multienzyme complexes, stability at extreme
temperature and pH, lesser feedback inhibition, and
ability to withstand variety of environmental stress
(sharma et al. 2013).

At present, the best studied cellulose-degrading
ecosystems are the rumen of herbivorous animals
and compost systems. However, little is known
about the microbial diversity during the composting
of the organic fraction of source separated
household wastes (i.e. vegetable, fruit and garden
wastes, also called biowastes) (Ryckeboer et al.
2003)

Enzymatic hydrolysis is an economic process in the
conversion of cellulose to easily fermentable low
cost sugars (Muthuvelayudham and Viruthagiri,
2006).In case of commercial applications of
industrial enzymes, microorganisms are the most
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Abstract

Cellulose is biologically renewable resource widely found in industrial and municipal wastes and agriculture residues. The
cellulosic waste material can be transformed to glucose and other soluble sugars by using cellulase enzymes of
cellulolytic organisms. Now it is well known that hydrolysis of cellulose to reducing sugars, can be further used for the
production of ethanol as biofuel. Within cellulolytic microorganisms, three major types of enzymatic activities are defined
as cellulases which act synergistically on their substrate. At present, cellulases and related enzymes are widely used in
different sectors (food, agriculture, animal feed, brewery and wine, textile and laundry, pulp and paper industries, and for
research purposes). It has been thought that only a small percentage of microorganisms can degrade cellulose, probably
because a wide range of cellulolytic organisms are not cultivable then unknown and not identified at present.
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important source of various enzymes (Ibrahim,
2008). Moreover, Thermostable enzymes are highly
specific and thus have considerable potential for
many industrial applications. The use of such
enzymes those are important for industrial utilization
because of the possible economic benefits of being
able to degrade plant residues at elevated
temperatures (Haki and Rakshit, 2003)

Cellulose biodegradation

Cellulose biogenesis results from the coordinated
action of enzymatic polymerization, followed by the
extrusion and crystallization of the nascent cellulose
microfibrils (Brown, 1996). The combination of
these events leads to the production of whisker-like
crystalline microfibrils, wherein the cellulose chains
are packed in parallel fashion (Hieta et al. 1984;
Chanzy and Henrissat., 1985). T'he microfibrils are
then assembled into superstructures, such as cell
walls, fibers, pellicles and so on. Enzymatic
hydrolysis of cellulose by microorganisms is a key
step in the global carbon cycle.

Cellulose

Cellulose, representing more than 50% of the
biomass, is the principal component of plant cell
wall. It is also synthesised by some fungi
(Allomyces and oomycetes), algae (Valonia),
protozoa (Dyctostelium, Discoideum), bacteria
(Acetobacter xylinum, Rhizobium, Agrobacterium
and Sarcinia). Thus, some animals are able to
produce cellulose, particularly in
the tests of ascidians (where the cellulose was
historically termed "tunicine") although it is also a
minor component of mammalian connective tissue
(Endean, 1961)

Cellulose is composed of linear chains of D-glucose
linked by ß-1,4-glycosidic bonds (Figure1). Each D-
anhydroglucopyranose unit possesses hydroxyl
groups at C2, C3, and C6 positions. The molecular
structure imparts cellulose with its characteristic
properties: hydrophylicity, chirality, degradability,
and broad chemical variability initiated by the high
donor reactivity of hydroxyl groups. Cellulose is
much more crystalline compared to other
saccharides. to be amorphous in water cellulose
requires a temperature of 320 °C and pressure of
25 MPa (Shigeru et al. 2006)

Cellulose could be found in the forme of different
crystalline structures (according to the location of
hydrogen bonds between and within strands).

Natural cellulose is cellulose I (Iα produced by
bacteria and algae and Iβ by higher plants).
Cellulose II consiste in regenerated cellulose. With
various chemical treatments it is possible to
produce the structures cellulose III and cellulose IV
(Pérez and Mackie, 2001)

Cellulases

The enormous structural variety and rigidity of
cellulosic matters have given rise to a phenomenal
diversity of degradative enzymes, the cellulases.
There is a wide spectrum of microorganisms which
can produce the variety of enzymes like cellulases,
hemicellulases, ligninases, pectinases, esterases,
oxidoreductases and proteases (Aslam et al. 2009;
Chandra et al. 2010; Chidi et al. 2008). Although a
large number of microorganisms can degrade
cellulose, only a few them produce significant
quantities of free enzyme capable of completely
hydrolyzing crystalline cellulose (Koomnok, 2005)

Components of cellulase systems were first
classified based on their mode of catalytic action
and have more recently been classified based on
structural properties (Henrissat et .al., 1998). Three
major types of cellulases are known,
endoglucanases, exoglucanases and β-
glucosidases. These enzymes can either be free or
grouped in a multicomponent enzyme complex
(cellulosome) found in anaerobic cellulolytic
bacteria (Mosier et al. 1999).

Biotechnology of cellulases and hemicellulases
began in early 1980s, first in animal feed followed
by food applications (Chesson, 1987; Thomke et al.
1980; Voragen, 1992; Voragen et al. 1980, 1986).
Cellulases have versatile applications in textile,
laundry, pulpand paper, fruit juice extraction, and
animal feed additives (Das et al. 2010). In addition,
they find use in saccharification of lignocellulosic
agroresidues to fermentable sugars which can be
used for production of bioethanol, lactic acid, and
single-cell protein (Tae et al ., 2000; Sanchez and
Cardona, 2008).

Cellulolytic microorganisms diversity

Originally it was thought that only microorganisms
produced cellulases but it is now clear that some
insects, mollusks, nematodes, and protozoa also
produce cellulases (Watanabe and Tokuda, 2001)
At present, It appears that some animal species,
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Figure 1.  The structure of cellulose

including termites and crayfish, produce their own
cellulases, which differ substantially from those of
their indigenous microflora (Watanabe and Tokuda,
2001). Moroever, even when termites, ruminants or
shipworms utilize cellulose as an energy source,
microorganisms usually are involved in its
degradation (Weimer, 2009; Distel et al. 2002).

In the rumen, forage degradation and fermentation
in assimilable compounds for host animals are
carried out by a strict anaerobic microbial
population made up of numerous species of
bacteria, protozoa and fungi organised in a trophic
chain (Bhat, 2000). Indeed the fibrolytic agents in
the digestive tracts of ruminants are essentially
represented by both bacteria and Chytridomycete
fungi. The number of bacteria is more important,
and in lowfiber diets the fungi are often absent (Lee
et al. 1997). However, the fungi appear to enhance
degradation via physical penetration and weakening
of the plant cell walls (Akin et al. 1990; 1989; Ho et
Abdullah, 1999). Moroever, among the bacteria,
there is a distinct difference in cellulolytic strategy
between the aerobic and anaerobic groups. With
relatively few exceptions (Rainey et al. 1994;
Svetlichnyi et al. 1990).

No cellulolytic microorganism of domain Archaea
have yet been discovered (Lynd et al. 2002).
Whereas, there is considerable number of
cellulolytic microorganisms within the eubacteria
among the predominantly aerobic order
Actinomycetales (phylum Actinobacteria) and the
anaerobic order Clostridiales (phylum Firmicutes)
(Lynd et al. 2002).

The cellulolytic bacteria (Table 1) comprise diverse
physiological groups but only a few species within
are actively cellulolytic:

Group (1) aerobic gram-positive bacteria
(Cellulomonas and Thermobifida);

Grou p (2) aerobic gliding bacteria (Cytophaga, and
Sporocytophaga).

Grou p (3) fermentative anaerobes, (Clostridium,
Ruminococcus, and Caldicellulosiruptor)  containing
a few gram-negative species, most of which are
phylogenetically related to the Clostridium
assemblage (Butyrivibrio and Acetivibrio) but some
of which are not (Fibrobacter).

Fungi are well-known agents of decomposition of
organic matter in general and of cellulosic
substrates in particular (Carlile and Watkinson.,
1997; Montegut, 1991). Fungal cellulose utilization
is distributed across the entire kingdom, from the
primitive, protist-like Chytridomycetes to the
advanced Basidiomycetes. A number of species of
the most primitive group of fungi, the anaerobic
Chytridomycetes, are well known for their ability to
degrade cellulose in gastrointestinal tracts of
ruminant animals. Cellulolytic capability is also well
represented among the remaining subdivisions of
aerobic fungi. Within the approximately 700 species
of Zygomycetes, only certain members of the genus
Mucor have been shown to possess significant
cellulolytic activity, although members of this genus
are better known for their ability to utilize soluble
substrates. By contrast, the much more diverse
subdivisions Ascomycetes, Basidiomycetes, and
Deuteromycetes (each of which number over
15,000 species (Carlile and Watkinson., 1997),
contain large numbers of cellulolytic species.
Members of genera that have received considerable
study with respect to their cellulolytic enzymes
and/or wood-degrading capability
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Table 1. Morphological features of some cellulolytic strains of bacteria (Lynd et al., 2002)

Oxygen
relationship

Representative species Gram
reaction

Morphology Motility References

Aerobic

Acidothermus cellulolyticus
Bacillus pumilis
Caldibacillus cellovorans
Cellulomonas flavigena, C. uda
Cellvibrio fulvus, C. gilvus
Cytophaga  hutchinsonii
Erwinia carotovora
Micromonospora
Pseudomonas fluorescens var. cellulosa
Sporocytophaga myxococcoides
Rhodothermus marinus
Streptomyces reticuli
Thermobifida fusca

+
+
+
+
-
-
-
+
-
-

+
+

Rod
Rod
Rod
Rod

Curved rod
Rod
Rod

Filamentous rod
Rod
Rod
Rod

Filamentous rod
Filamentous rod

Flagellar

Flagellar
Flagellar
Gliding

Flagellar
Nonmotile
Flagellar
Gliding

Nonmotile
Nonmotile

(Bergquist et al. 1999)
(Gordon et al. 1973)
(Bergquist et al. 1999)
(Bagnara et al. 1987)
(Shafer et King, 1965)
(Kauri et Kushner, 1985)
(Barras et al. 1994)
(Gallagher et al. 1996)
(Kim, 1987)
(Vance et al. 1980)
(Bergquist et al. 1999)
(Wachinger et al. 1989)
(Zhang et al. 1998)

Anaerobic

Acetivibrio cellulolyticus
Anaerocellum thermophilum
Butyrivibrio fibrisolvens
Caldicellulosiruptor saccharolyticum
Clostridium thermocellum, C.cellulolyticum
Eubacterium cellulosolvens
Fervidobacterium islandicum
Fibrobacter succinogenes
Halocella cellulolytica
Ruminococcus albus, R. flavefaciens
Spirochaeta  thermophila
Thermotoga neapolitana

-
+
+
-
+
+
-
-
-
+
+
-

Curved rod
Rod

Curved rod
Rod
Rod
Rod
Rod
Rod
Rod

Coccus
Spiral
Rod

Nonmotile
Flagellar
Flagellar
Flagellar
Flagellar

Nonmotile
Flagellar

Nonmotile
Flagellar

Nonmotile

(Khan et al. 1994)
(Svetlichnyi et al. 1990)
(Hungate, 1966)
(Rainey et al. 1994)
(Ljungdahl et al. 1981)
(Gylswyk et al. 1986)
(Huber et al 1990)
(Hungate, 1966)
(Simankova et al. 1993)
(Hungate, 1966)
(Aksenova et al. 1992)
(Bergquist et al. 1999)
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include Bulgaria, Chaetomium, and Helotium
(Ascomycetes); Coriolus, Phanerochaete, Poria,
Schizophyllum and Serpula (Basidiomycetes); and
Aspergillus, Cladosporium, Fusarium, Geotrichum,
Myrothecium, Paecilomyces, Penicillium, and
Trichoderma (Deuteromycetes) (Lynd et al; 2002).

The nutrient requirements for growth of cellulolytic
species include available nitrogen, phosphorus, and
sulfur, plus standard macro- and microminerals and
various vitamins. Although additional nutrients
present in complex media (e.g., peptones and yeast
extract) are not usually required, they often
stimulate the growth of individual strains,
sometimes dramatically (Lynd et al; 2002).

Conclusion

The increase in human population with Industrial
development and biotechnology progression
enabled easier daily production of enormous
residues and urbain wastes which contains several
kinds of polymers, an important biologically
renewable resource. Basic and applied research
regarding fibrolytic organisms producing a wide
variety of enzymes (cellulases, hemicellulases and
pectinases)  has not only enhanced our scientific
knowledge but has also revealed their enormous
potential in different sectors. However, until now the
number of cellulolytic microorganisms clearly
identified and characterized is low compared to the
high number of organisms and the enormous
complexity of cellulose-degrading ecosystems.
Accordingly, our researches about such
microorganisms should be multiplied again.
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