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Abstract 
 
Poxviruses are big viruses with complex DNA genomes that belong to the Poxviridae family. The family includes 
several pox viruses of medical and veterinary importance. In 1980, the small pox was eradicated globally with an 
intensive mass-vaccination campaign with a highly efficacious live vaccine of another pox virus called the vaccinia 
virus. Despite the eradication of smallpox, there was an explosion of interest in vaccinia virus in the eighties. This 
interest has stemmed in part from the application of molecular genetics to clone and express foreign genes from 
recombinant vaccinia viruses. Thus, the current paper provides a review of the pox virus as a vaccine vector and a 
possible application of a pox virus-based vector. The poxvirus recombinants that have been generated for vaccination 
against heterologous pathogens includes, (i) the engineering of the Copenhagen strain of vaccinia virus to express the 
rabies virus glycoprotein. (ii) A fowl pox-based recombinant expressing the Newcastle disease virus fusion and 
hemagglutinin glycoprotein has been shown to protect commercial broiler chickens for their lifetime. (iii) 
Recombinants of canary pox virus, which is restricted for replication to avian species, have provided protection 
against rabies virus challenge in cats and dogs, against canine distemper virus, feline leukemia virus, and equine 
influenza virus disease. In humans, canarypox virus-based recombinants expressing antigens from rabies virus, 
Japanese encephalitis virus, and HIV have been shown to be safe and immunogenic. (iv) A highly attenuated vaccinia 
derivative, NYVAC, has been engineered to express antigens from both animal and human pathogens. It is 
recommended that the application of multiple recombinant viruses in research and vaccinology has led to the 
development of poxvirus vectored vaccines which have proved to be even safer and more efficacious non-replicating 
vectors used to eliminate serious pathogens when used on the target species. 
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Introduction 
 
Poxviruses are one of the most widely 
investigated vectors for gene delivery in the 
context of stimulating innate and adaptive 
immunity with recombinant vaccines (Philip et 
al., 2005). Dr. Edward Jenner demonstrated in 
1798 that deliberately inoculating humans with 
cowpox virus provided protection against the 
antigenically related smallpox virus (variola) 
(Pastoret and Vanderplasschen, 2003). This 
discovery led to the eradication of small pox from 
the earth in 1980 after a world-wide vaccination 
campaign with the vaccinia virus vector (Fenner 
et al., 1988; Vanderplasschen et al., 2003). Since 
then, numerous reports have described the 
usefulness of this vector system, particularly with 
respect to developing vector-based vaccine 
candidates (Bhanuprakash et al., 2016). Thus, by 
splicing genes from heterologous pathogens into 
the vaccinia virus vector, one could immunize 
against that cognate pathogen (Gillard et al., 
2011). 
 
Vaccinia virus is the prototypical poxvirus and 
has been administered to more than a billion 
people, largely through the highly successful 
smallpox eradication program (Philip et al., 2005; 
Fenner et al., 1988). The large size of the vaccinia 
genome and the stability of recombinant vectors 
have allowed multiple transgenes to be expressed 
in a single vaccinia virus vector (Garcel et al., 
2007).Another major advantage is that proteins 
expressed by vaccinia virus tend to be more 
immunogenic than the native protein, most likely 
secondary to the inflammatory response triggered 
against highly immunogenic vaccinia proteins 
(Bertram et al., 2009).Other advantages of 
poxviruses include a wide host range, accurate 
replication potential, and efficient post-
translational processing of inserted gene products 
(Verardi et al., 2012).  
 
Currently, numerous strains of vaccinia have been 
engineered to express a wide range of antigens 
from a wide range of bacterial, viral, and parasitic 
pathogens, with the recombinants being tested in 
both animal models and target species (Qin et al., 
2015; Qin et al., 2011; Carroll et al., 2011). Initial 

safety concerns of vaccinia virus vectors have 
been addressed by the use of highly attenuated 
replication-deficient strains of the virus as well as 
the engineering of host range-restricted pox 
viruses such as canary pox virus that, while 
restricted for productive replication to avian 
species, have been shown to effectively vaccinate 
non avian targets (Walsh and Dolin, 2011; 
Bertram et al., 2009; Jacqueline et al., 2009). The 
initial studies on vaccinia virus were extended to 
other members of the pox virus family so as to 
provide species specific vectors (Stading et al., 
2016; McFadden, 2005). 
 
Fowl pox-based vectors are an example of 
recombinant vaccines used in the poultry industry. 
Much information has been gained through this 
period, and today some commercial success has 
been evidenced by the licensing of several 
products in the veterinary area (Elmich et al., 
2006; Vanniasinkam et al., 2021). Recombinant 
DNA technology transformed molecular biology 
in the early 1980s, allowing foreign DNA to be 
inserted into poxvirus genomes (Sampedro et al., 
2015). In 1960, Woodroffe and Fenner reported 
that homologous recombination between the 
genomes of two replicating poxviruses could 
occur (Woodroofe and Fenner, 1960). The 
capacity to insert heterologous genes into 
poxvirus genomes greatly enhances their 
vaccination potential (Juan and Mariano, 2014). 
Rather than small pox vaccines, vaccinations 
against a variety of heterologous diseases, 
including the hepatitis B surface antigen 
(Margaret, 2010), influenza virus hemagglutinin 
(Gerd and Caroline, 2003), herpes virus 
glycoprotein D and rabies virus glycoprotein. In 
addition to continuing research in this field for 
vaccinations, pox virus-based vectors 
immunotherapy is being developed today and new 
fields of endeavor are being investigated, such as 
in cancer (John and Thomas, 2002; Rauch et al., 
2018; Zilinget al., 2021). 
 
The aim of this review was to bring together 
available data from primary research conducted 
so far onpox virus-based vectors as recombinant 
vaccines and their possible application of a pox 
virus based vector. 
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Background of pox virus 
 
Poxviruses are big viruses with complex DNA 
genomes ranging in size from 130 to 300 kb pairs, 
each end featuring a hairpin loop (Souza et al., 
2005).  Therefore, mammalian poxvirus genomes 
are around 130 kb, and avian poxvirus genomes 
are around 300 kb. Because of the huge genome 
size, more than 10 kb of foreign DNA can be 
inserted without impacting infectivity or other key 
viral functions (Kim et al., 2012). Poxviruses, 
unlike other DNA viruses, have their own 
transcription machinery, viral DNA-dependent 
RNA polymerase, and post-transcriptional 
modifying enzymes, allowing them to self-
replicate in the cytoplasm (Choi et al., 2013). 
The Poxviridae family is divided into two 
subfamilies, one of which, Chordopoxviridae, 
contains vertebrate poxviruses (Barrett et al., 
2008). The Chordopoxviridae contains eight 
genera that may infect vertebrates; the 
Orthopoxvirus and Avipoxvirus genera have been 
extensively developed for use as recombinant 
vectors in vaccine development (Souza et al., 
2005). Variola virus, which causes smallpox, and 
vaccinia virus, which is used in the smallpox 
vaccine, are both members of the Orthopoxvirus 
genus, while fowlpox and canarypox are both 
members of the Avipoxvirus genus (Hendrickson 
et al., 2010). 
 
Poxviruses are excellent as vaccine vectors 
because of certain properties. Importantly, these 
vectors are extremely stable and can be stored and 
used for up to two months after being lyophilized 
(Haut et al., 2005). They are inexpensive to 
produce and have the ability to be administered in 
a variety of ways, as evidenced by their safe 
delivery via intradermal, intranasal, intravaginal, 
and intrarectal routes to induce antibody and T-
cell responses (Wang et al., 2015). Both mucosal 
and systemic immune responses to vaccinia 
recombinants have been observed after oral 
treatment (Gherardi and Esteban, 1999). 
 
Finally, due to the compartmentalization of the 
systemic and mucosal immune systems, 
preexisting immunity to vaccinia virus, one of the 
fundamental limitations of recombinant-viral  

 
vaccines, can be overcome by mucosal 
vaccination with vaccinia vectors (Robinson and 
H.L., 2002). 
 
Recombinant poxvirus vector development 
strategies 
 
The exchange of nucleotide sequences between 
two similar or identical DNA molecules is known 
as homologous recombination (Cooper et al., 
2000). For the creation of recombinant 
poxviruses, homologous recombination is 
currently routinely exploited (Moss and B., 2013). 
This method necessitates the creation of a transfer 
plasmid (recombination plasmid) carrying the 
foreign gene insert (heterologous gene) as well as 
the parent poxvirus genome's left and right 
homology DNA sequences flanking the insertion 
site(Bartuli et al., 2022) (Fig 1). In order to 
achieve homologous recombination and 
recombinant poxvirus formation, permissive cells 
are infected with the parent poxvirus and then 
transfected with the recombination plasmid 
(infection/transfection) (Wyatt et al., 2017). 
Homologous recombination between the parental 
virus and the recombination plasmid occurs 
within infected and transfected cells, resulting in a 
new chimeric recombinant poxvirus. Multiple 
rounds of limiting dilution and/or plaque assay are 
used to purify the recombinant poxvirus (Qin and 
Evans, 2014). 
 
To achieve homologous recombination, numerous 
criteria must be taken into account, including 
homology length and DNA structure (Yao et al., 
2001). When homologous flanks with at least 
100–350 bp and linear plasmid DNA were 
employed in infection/transfection assays with 
VACV, higher recombination frequencies were 
found (del Rio et al., 2019).The following criteria 
must be addressed while designing and producing 
poxvirus-based vectors, in addition to the 
insertion site and homology length(Mastrangelo et 
al., 2000; Yao et al., 2001): 
 
A. The promoters. Selection of the promoter that 
will drive expression of the heterologous gene is a 
vital part in the design of poxvirus vectors, given  
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the temporal regulation of poxvirus gene 
transcription (early, intermediate, and late) 
(Knutson et al., 2006). In general, promoters with 
both early and late activity are advantageous for 
foreign gene expression because they drive 
heterologous gene production throughout the 
vector infection cycle, encouraging persistent 
antigen expression and subsequent immune 
system stimulation (Buchschacheret al., 2000). 
When the poxvirus vector is replication deficient 
or when the vector is to be employed in a non-
permissive animal species, early promoters are 
preferred because late promoters, which occur 
after virus replication, prevent 
expression(McFadden and G., 2005). The native 
VACV early/late promoters, the modified early 
promoter, or synthetic promoters, for which 
expression has been improved by mutagenesis, 
are the most often employed promoters to drive 
expression of heterologous genes by poxviruses 
(Garca-Arriaza et al., 2014). 
 
B. Termination signal. The inclusion of the 
poxvirus early termination signal within the 
sequence of heterologous genes may result in 

premature transcription termination, resulting in 
low expression levels or the expression of a 
truncated protein (Joshi et al., 2021). Before 
putting the gene into the vector, termination 
signals should be eliminated from the 
heterologous gene sequence using site-directed 
mutagenesis or synthetic biology (Yoshikawa et 
al., 2015). 
 
C. Codon optimization. Codon optimization of 
the heterologous gene may aid in achieving higher 
expression levels, particularly in non-target 
animal species where replication and late gene 
expression are compromised. Codon optimization 
improves recombinant vector stability by deleting 
unwanted sequences (Norkiene and Gedvilaite, 
2012). It can also be used to create multivalent 
heterosubtypic viral vectors that contain two or 
more viral genes from closely related virus strains 
(Vrba et al., 2020). By minimizing or reducing 
the probability of intramolecular homologous 
recombination, codon optimization and 
modifications in the nucleotide sequence of one of 
the genes improve the vector's stability(Atkinson 
et al., 2010). 

 
 

 
 
Figure 1:Schematic representation of homologous recombination of pox virus 
Source:(Vanniasinkam et al., 2021). 
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D. Selection method. It is one of the most time-
consuming phases in creating recombinant 
poxvirus-based vectors. Recently, fluorescent 
proteins such as the green fluorescent protein 
(GFP) have been successfully employed in the 
selection of recombinant poxviruses. Along with 
the gene of interest, a gene that expresses GFP or 
another fluorescent protein is added (Wong et al., 
2011; Leyrer and Mayer, n.d.). The Plaque assay 
(Hain et al., 2016) can be used to identify 
recombinant poxviruses that express fluorescent 
protein. Because promoter interference might 
result in reduced protein expression levels when 
numerous genes are expressed simultaneously, the 
presence of marker genes is not always advised. 
As a result, methods for creating markerless 
recombinant poxviruses have recently been 
devised. Real-time PCR or immunofluorescence 
tests targeting heterologous genes are the easiest 
ways (Martins et al., 2017). More advanced 
techniques based on Cre/loxP recombination, 
which permit selection and subsequent removal of 
marker genes, have also been established and 
provide an effective means to construct 
markerless recombinants (Rintoul et al., 2011). 
Yuan et al. (2015) presented a marker-free 
technique for creating vaccinia virus vectors 
utilizing CRISPR (clustered regularly interspaced 
short palindromic repeat)-Cas9. 
 
 Recombinant pox viruses as vaccine vector 
 
The use of pox virus-based vectors as 
recombinant vaccines for heterologous bacterial, 
viral, or parasitic pathogens was the first practical 
application of this technology, deriving from the 
fact that vaccinia virus was an established vaccine 
(Gómez et al., 2008). 
 

A. Vaccinia virus 
 
Vaccinia virus (VACV), a large double-stranded 
DNA virus, is the prototypic and best 
characterized member of the poxvirus family. 
Replication and gene expression occur in the 
cytoplasm of the infected host cell (Dhungel et 
al., 2020). 
 

Some of the characteristics that have made VACV 
a popular and extensively used vector include:(i) 
the virus's large genome size (190 kb), which 
allows for the manipulation of many non-essential 
genes without affecting virus replication(Guo et 
al., 2004); (ii) the virus's ability to tolerate 
insertion of up to 25,000 bp of foreign DNA 
(Smith et al., 1983; Jordan et al., 2013); (iii) the 
virus's ability to induce both humoral and cell-
mediated immunities (Gherardiet al., 1999; 
Legrand et al., 2004); (iv) the simplicity of 
delivery and efficiency of immunization through 
various methods (Hickling et al., 2011); and (v) 
the virus's lyophilized stability at room 
temperature, eliminating the necessity for a cold 
chain (Collier and L.H., 1955; Ghobadloo, 2014). 
 
A VACV-based vectored rabies vaccine is the 
first recombinant poxvirus to be licensed for use 
as a vaccine(Amann et al., 2013). A recombinant 
by introducing the rabies virus (RabV) 
glycoprotein (G) gene into the thymidine kinase 
(TK) locus of the Copenhagen strain of vaccinia 
virus is created (Desmettre et al., 1990; Lauer and 
K., 2016).It has been used to prevent rabies in red 
foxes in various European nations, as well as 
coyotes and raccoons in the United States and 
raccoons in Canada (Weyer et al., 2009; Cliquet 
et al., 2004). The vaccination is administered as 
an oral bait that is disseminated by hand or 
airplane in the wild habitat of the target species. 
In foxes, raccoons, and coyotes, this vaccine is 
safe and efficacious (Maki et al., 2017). It's been 
demonstrated to work in vampire bats, which are 
a major rabies virus reservoir (Aguilar-Setién et 
al., 2002). When given orally to skunks and dogs, 
however, it is less effective (Grosenbaugh et al., 
2007; Rupprecht et al., 2005). Furthermore, 
because it is a live attenuated vaccine, safety 
concerns about live virus-based vaccines being 
exposed to non-target species have been 
highlighted. To find safer alternatives to this 
vaccine, recombinant MVA, a significantly 
attenuated VACV strain expressing the RabV G, 
was created (Weyeret al., 2007). 
 
Recombinant VACV vectors producing the 
rinderpest virus's hemagglutinin (H) and fusion 
(F) proteins have been created. By introducing the  
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H or F gene into the TK locus of the VACV 
Wyeth strain, two vaccinia recombinants were 
created(Ellis and R.W., 2001).Even when 
inoculated cattle were challenged with 1000 times 
the lethal dosage of rinderpest virus, vaccination 
with either recombinant or a combo of the two 
recombinants afforded 100 percent protection 
(Spinageand C.A., 2003). The VACV vector was 
not transmitted from vaccinated animals to 
contact animals. Furthermore, calves vaccinated 
with a mixture of recombinant vectors showed 
strong immunity, as evidenced by the absence of 
an amnestic reaction to rinderpest viral challenge 
(Giavedoni et al., 1991; Verardi et al., 2002). 
 
Later, using the TK locus of the VACV 
Copenhagen strain, another VACV-based 
recombinant expressing H and F genes (v2RVFH) 
was created.In place of the natural VACV 
promoter employed in prior creations, a powerful 
synthetic VACV promoter was used. In 
comparison to vRVFH, this led to a threefold 
increase in H and F gene expression (Wyatt et al., 
2017).In cattle, a dose of 108 PFU administered 
intramuscularly provided sterilizing immunity for 
at least 16 months (citeseerx.ist.psu.edu, 
n.d.).Interestingly, VACV strain Wyeth, which 
expresses the rinderpest virus's H and F genes 
(vRVFH), protects goats from the peste des 
petitsruminants virus (PPRV). Despite vRVFH's 
inability to produce anti-PPRV neutralizing 
antibodies, goats were completely protected 
against PPR (Jones et al., 1993; Herbert et al., 
2014).The protection evoked by this recombinant 
vector in goats could be due to cell-mediated 
immunity or non-neutralizing antibodies. Cross-
protection for canine distemper virus (CDV) 
vectored by VACV vectors has also been 
proven(Welter et al., 2000). 
 
B. Avipoxvirus-Based Vectors 
 
Avipoxviruses were first proposed as vaccine 
delivery vectors for chickens(Boyle and 
D.B.,2007).The fowlpox virus (FWPV) and 
canarypox virus (CNPV), which infect domestic 
chickens and canaries, respectively, have helped 
us grasp the molecular and biological properties 
of avipoxviruses (Joshi et al., 2021).  

 
The discovery that recombinant FWPV causes an 
abortive infection in non-avian tissue cellcultures 
and expresses foreign antigens capable of eliciting 
an immune response in mammals prompted 
interest in employing avipoxviruses as vectors for 
humans and other animals (Investigation of Local 
South African Avipoxviruses as Potential Vaccine 
Vectors, 2014).Furthermore, pre-existing 
immunity to orthopoxviruses has no effect on the 
immunogenicity of FWPV and canarypox virus 
(CNPV), indicating that they could be utilized as 
vectors in people who have been exposed to 
vaccinia virus or who have been vaccinated 
against smallpox (Weliet al., 2011). As a result, a 
vast number of avipoxvirus recombinants based 
on FWPV and CNPV for use in people and 
animals have been created(Giotis et al., 2019). 
 
Fowlpox Virus-Based Vectors 
 
Several avian influenza (AI)-targeting fowlpox 
virus recombinant constructs have been created 
(Criado et al., 2019). Hemagglutinin-inhibiting 
(HI) antibodies were produced in hens by a 
fowlpox virus recombinant expressing the 
influenza virus HA protein at the TK locus. When 
chickens were re-immunized, a boost effect was 
observed (Richard-Mazet et al., 
2014).Interestingly, birds with very low levels of 
HI or neutralizing antibodies were protected 
against AI (Palya et al., 2018). The effector 
mechanism of protection against AI in birds 
lacking large amounts of HI or neutralizing 
antibodies has been proposed (Swayne et al., 
2000). Some recent H5N1 Asian AI isolates, such 
as A/chicken/South Korea/03 and 
A/chicken/Vietnam/04, have shown good levels 
of protection (Bublot et al., 2006). Another 
recombinant FWPV vector that co-expresses HA 
(H5 subtype) and neuraminidase (N1 subtype) can 
give hens 100% protection against AI H5N1 
infection. Protection was found to be 
accompanied by significant levels of HA- and N1-
specific antibodies (Qiao et al., 2003). This 
recombinant can provide cross protection against 
H5N1 and H7N1 highly pathogenic avian 
influenza (HPAI) virus challenges, owing to 
cross-reactive immunity afforded by the shared  
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N1 protein between these two HPAI types(Jiao et 
al., 2016). 
 
Canarypox Virus-Based Vectors 
 
Canarypox virus is another avipoxvirus that has 
been frequently employed as a vaccine vector 
(CNPV). ALVAC, a highly purified clone of 
CNPV, is commonly utilized as a vector (Sasso et 
al., 2020). This clone produced via serial passage 
of wild-type CNPV for 200 passes in CEF (Hu 
and N.C., 2010).The CNPV ALVAC vector was 
used in human clinical trials as an HIV/AIDS 
vaccine candidate due to its safety and 
immunogenicity profile (Sampedro et al., 2015). 
ALVAC-AI-H5 (influenza virus), ALVAC-RV 
(rabies virus), and ALVAC-CDV-H/F (canine 
distemper virus) are among the ALVAC-based 
vectored vaccines approved for veterinary use 
(Poulet et al., 2007). In mice, cats, and dogs, 
canarypox virus recombinants expressing RabV G 
have been shown to elicit substantial levels of 
neutralizing antibodies. After challenge infection, 
the level of protection seen was comparable to 
that induced by a replication-competent VACV 
vector (Huang et al., 2009). 
 
C. Parapoxvirus-Based Vectors 
 
Orf virus (ORFV) is the type species of the 
Parapoxvirus genus of the family Poxviridae and 
infects sheep and goats, often around the mouth, 
resulting in acute pustular skin lesions (Fleming et 
al., 2017). However, as a vector, the type species 
parapoxvirus Orf virus (ORFV) has been 
frequently employed (www.sciencedirect.com, 
n.d.). ORFV has several characteristics that make 
it a good candidate vector: (1) its restricted host 
range (sheep and goats), (2) its ability to induce 
humoral and cellular immune responses even in 
non-permissive hosts (Hainet al., 2016; Martins et 
al., 2017), (3) its skin tropism and lack of 
systemic infection, (4) the fact that ORFV induces 
short-lived ORFV-specific immunity and does not 
induce neutralizing antibodies, allowing repeated 
immunizations (Hainet al., 2016; Joshi et al., 
2018), and (5) the virus's immunomodulatory 
capabilities (Friebe et al., 2004). Orf virus 
contains multiple immunomodulatory proteins  

 
(IMPs) that have been widely studied. These 
include an interleukin-10 homologue (vIL-10) 
(Fleming et al., 2007), a chemokine-binding 
protein (CBP) (Seet et al., 2003), a granulocyte-
monocyte colony stimulating factor (GMC-CSF) 
inhibitor (Deane et al., 2000), an interferon 
resistance gene (VIR), a homologue of vascular 
endothelial growth factor (VEGF) (Westphal et 
al., 2007),and at least four nuclear factor-kappa 
(NF-B) signaling pathway inhibitors (Diel et al., 
2011; Khatiwada et al., 2017). Because of the 
existence of these well-characterized IMPs, 
ORFV-based vectored vaccines can be rationally 
engineered (Martins et al., 2017).  
 
ORFV strains D1701 and OV IA82 have been 
investigated as vectors for veterinary use. After 
serial cell culture passage of an ORFV isolate 
from sheep in African green monkey kidney cells 
(Vero cells), the substantially attenuated ORFV 
strain D1701 was produced (Reguzova et al., 
2020). This virus is non-pathogenic in sheep and 
has good cell culture adaptability. Because of 
additional genomic deletions, ORFV strain D1701 
was further attenuated after adaptation in Vero 
cells. Even in immunosuppressed natural host 
sheep, this virus, termed D1701-V, is non-
pathogenic (Rziha et al., 2000). The D1701-V 
strain has been tested as a vector in both 
permissive and non-permissive animal species. 
The VEGF-E locus of D1701-V has been used to 
insert heterologous genes using the VEGF-E 
gene's early promoter in most constructions 
(Schneider et al., 2020). In mice, cats, and dogs, 
the D1701-V recombinant expressing rabies G 
can generate significant levels of rabies virus-
specific neutralizing antibodies (Amann et al., 
2013). 
 
D. Swinepox Virus-Based Vector 
 
The only member of the Suipoxvirus genus is the 
swinepox virus (SPV), one of eight genera within 
the Chordopoxvirinae subfamily of the Poxviridae 
(Afonso et al., 2002). In pigs, swinepox virus is 
an acute, often mild, infectious disease 
characterized by skin eruptions that affect only 
pigs (MSD Veterinary Manual, n.d.). SPV-based 
recombinant vectored vaccination candidates have  
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primarily been developed for pigs because of the 
virus's limited host range (Yuan et al., 2018). A 
recombinant SPV targeting Aujeszky's disease 
(pseudo rabies virus (PRV)) was one of the first 
attempts to employ SPV as a vector (Freuling et 
al., 2017). Under the early/late promoter, the PRV 
gp40 and gp63 genes were introduced into the TK 
locus of SPV. At 21 days after vaccination, 90% 
of scarification-vaccinated pigs acquired serum 
neutralizing antibodies against pseudorabies virus, 
whereas 100% of intramuscularly vaccinated 
animals developed neutralizing antibodies 
(Vanniasinkam et al., 2020). 
 
E. Capripoxvirus-Based Vector 
 
Goatpox virus, Sheeppox virus, and Lumpy skin 
disease virus are all members of the 
Capripoxvirus genus (LSDV) (Hamdi et al., 
2020). SPPV infects sheep while GTPV infects 
goats, with some isolates infecting both. LSDV 
infects cattle and buffalo (Gelaye et al., 2019). 

Tulman et al., (2002) discovered that these three 
CPV species share 96–97% nucleotide similarity. 
Because of their high degree of sequence 
conservation, cross-infection is possible and 
immunity is demonstrated among the three 
viruses. Boshra et al., (2015) found that an 
attenuated LSDV lacking an IL-10 gene 
homologue (ORF005) provides protective 
immunity in sheep and goats against virulent 
capripoxvirus (CPV) exposure. According to 
Teffera et al.(2019), an attenuated strain of any 
capripoxvirus should be able to defend against 
SPPV, GTPV, and LSDV. It is possible to create 
multivalent vaccinations against CPV and other 
ruminant diseases using these viruses as vectors 
(Caufour et al., 2014).  
 
Furthermore, capripoxvirus replication is limited 
to ruminants, with no evidence of human 
infections. These characteristics make CPVs ideal 
candidates for recombinant vectored vaccine 
development (Shen et al., 2011). 

 
Table 1: Summarizes the poxvirus vectored vaccines that are currently licensed and commercially available 
for use in veterinary medicine. 
 

Vaccine trade 
name 

Target 
pathogen 

Target 
species 

Insert gene Poxvirus 
Vector 

References 

RABORAL 
V-RG 

Rabies Wildlife 
Canines 

Glycoprotei
n 

Vaccinia 
Virus 

(Desmettre et 
al.,1990;Kieny et 
al., 1984) 

ProteqFlu and 
RecombiTek 
 

Equine 
influenza 

Horses HA Canarypox (Minke et al., 2004) 

Recombitek 
West Nile 
Virus 

West Nile 
Virus 

Horses prM/E Canarypox (Siger et al., 2004; 
Meeusen 
 et al., 2007) 

PUREVAX 
Feline Rabies 

Rabies Cats Glycoprotei
n 

Canarypox (Meeusen et al., 
2007) 

PUREVAX 
Recombinant 
FeLV 

Feline 
leukemia virus 

Cats Env, 
Gag/pol 

Canarypox (Poulet et al., 2003; 
Meeusen et al., 
2007) 

Recombitek 
Distemper 

Canine 
distemper  
Virus 

Dogs HA and F Canarypox (Meeusen et al., 
2007; Stephensen et 
al., 1997) 

PUREVAX 
Ferret 
Distemper 

Canine 
distemper 
Virus 

Ferrets HA and F Canarypox (Meeusen et al., 
2007) 
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Other applications of pox virus based vector 
 
The pox virus vectors can also be looked at as 
general delivery systems for genes for other 
applications. For cancer immunotherapy, 
numerous pox virus-based recombinants 
expressing tumor-associated antigens or 
biological response modifiers have been described 
(Bonnet et al., 2000; Guse et al., 2011). Of 
particular note, recombinants expressing the 
carcinoembryonic antigen were shown to elicit 
both antibody and cellular immune responses in 
mice and monkeys and to protect mice from 
tumor cell challenge. Whether vaccinia or 
canarypox-based recombinants expressing the 
carcinoembryonic antigen will have any 
therapeutic benefit is currently being investigated 
in the clinic in patients with colorectal carcinomas 
(Flanagan, 2004; Beukema et al., 2006; Beukema, 
2009). A recent publication reported the 
protection of mice vaccinated with a p53 
expressing recombinant against challenge with an 
isogenic and highly tumorigenic mouse fibroblast 
tumor cell line expressing high levels of a mutant 
human p53 but lacking endogenous murine p53 
(Ma et al., 2010). Expression of the mutant form 
of p53 in the recombinant virus was not essential 
since the wild-type p53 afforded similar efficacy. 
This may be an important observation since p53 is 
an attractive target for cancer immunotherapy. 
Mutations of p53 represent the most common 
genetic changes demonstrated in human tumors 
(Vierboom et al., 2000; Blaszczyk‐Thurin et al., 
2002; Chan et al., 2004).  
 
Currently, highly-attenuated vaccinia strains and 
avipoxviruses have been extensively assessed in 
preclinical models, as well as in humans, to 
determine their immunogenicity and protective 

efficacy against HIV (Souza et al., 2005; 
Franchini et al., 2014). Attenuated vaccinia 
strains and avipoxviruses have been shown to be 
safe and able to carry HIV genes and express their 
proteins to induce both antibodies and cellular 
immune responses (Gómez et al., 2013). 
Preclinical studies show protection against HIV 
challenge. When using a live attenuated vector 
system, one must be cognizant of the potential for 
immune dampening because of vector-specific 
immunity. In this regard, avipoxviruses, such as 
canarypox, appear free of the inhibitory effects of 
vector immunity and repeated use (Jacobs et al., 
2009; Elena et al. 2012). In the coming 5 to 10 
years, we will certainly know whether this class 
of vaccine candidates, either alone or in a prime–
boost format with other vectors or proteins, 
willcontribute to HIV disease management either 
from a preventive or therapeutic perspective 
(Franchini et al., 2014). 
 

Conclusion and Recommendations  
 
 

The use of vaccinia virus (VACV) as a smallpox 
vaccine for nearly two centuries has led to the 
first deliberate eradication of a human disease 
from the earth. The use of pox virus-based vectors 
as heterologous vaccines and the ensuing years of 
extensive pursuit of this idea have provided 
numerous working examples in laboratory animal 
model systems as well as in target species. The 
work over the last thirty years has raised and 
resolved many questions related to the safety of 
poxvirus derived vectors. Vaccinia virus was 
genetically modified to reduce its pathogenicity 
and to restrict its broad host range. At the same 
time, the avipoxviruses were developed as 
extremely safe and useful recombinant vaccines 
for birds and mammals. 

Vectormune 
FP-MG 

Mycoplasma 
Gallisepticum 

Poultry 40k and 
mgc 

Fowlpox (Zhang et al., 2010) 

Vectormune 
FP-LT 

Laryngo 
Tracheitis 

Poultry  Fowlpox (Davison et al., 
2006) 

Vectormune 
FP-ND/ 

Newcastle 
disease 
Virus 

Poultry HN and F Fowlpox (Taylor et al., 1996; 
Meeusen et al., 
2007) 

TROVAC-
AIV H5 

Avian 
influenza 

Poultry HA Fowlpox (Bublot et al., 2006) 
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The recombinant capripoxvirus vaccine 
containing a cDNA of the peste-des-petits-
ruminants virus (PPRV) fusion protein gene was 
found to protect goats against challenge with a 
virulent PPRV strain. Poxvirus derived vectors 
have now been licensed for commercialization 
and a significant number of clinical studies have 
been and continue to be pursued for both 
infectious diseases, ex vivo therapies, and cancer 
immunotherapy, and they have shown promising 
trails to prevent serious disease. Given that there 
are differences between the ability of existing 
vaccinia virus strains and other poxviruses to 
function as immunization vehicles, safety and 
revaccination issues with each vaccine candidate 
in the target species are raised.  
 
Based on the above conclusion, the following 
recommendations are forwarded: 
 

 Additional research should be done on the 
effects of dose and route of immunization, 
recombinant stability, and sustained 
heterologous gene expression of pox virus 
based vector vaccines to enhance safety 
and immunogenicity. 

 VACV-like virus research, host range, 
transmissibility, and reservoir presence, 
characterization of unclassified 
poxviruses, and development of next-
generation vaccines could all become 
much more important. 

 Future work concentrating on the 
rationally designed and careful use of 
these vectors in the future will allow 
medics and veterinarians to prevent, cure 
and eradicate diseases. 
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