INTERNATIONAL JOURNAL OF CURRENT RESEARCH IN CHEMISTRY AND PHARMACEUTICAL SCIENCES

(p-ISSN: 2348-5213: e-ISSN: 2348-5221)

www.ijcrcps.com

DOI: 10.22192/ijcrcps

Coden: IJCROO(USA)

Volume 8, Issue 6 - 2021

Research Article

DOI: http://dx.doi.org/10.22192/ijcrcps.2021.08.06.002

Determination of Percentage of Laurel Oil in Laurel Soap Using Capillary Gas Chromatographic Analysis

Abdul Aziz Ramadan^{1*}, Hasna Mandil², Lina Anadani³

Department of Chemistry, Faculty of Science, University of Aleppo, Syria.

*¹E-mail: dramadan@scs-net.org or dramadan1946@gmail.com; ²E-mail: promandil955@gmail.com ³E-mail: Linaaaa10@hotmail.com

Abstract

A new analytical method for the quantitative determination of laurel oil in laurel soap by using capillary gas chromatography for detect fraud in the manufacture of laurel soap, which is widely spread in Syria, especially in the city of Aleppo, and is exported to various parts of the world was applied. Assuming that the minimum amount of lauric acid in laurel oil is 20%, provided that the percentage of myristic acid does not exceed 1% (will single out a new research later). Regression equations and correlation coefficient were as the follows: y = 0.2026x + 0.0047 (R²=0.9996), where y: percentage of lauric acid in fatty acid excreted from soap, and x: percentage of laurel oil in soap.

Keywords: Laurel soap, Fatty acids, percentage of laurel oil in soap, capillary GC analysis.

Introduction

Laurel oil also known as Mediterranean bay laurel, is widely grown in Turkey, Greece, Italy, Spain, Portugal, France, Syria, Morocco, Algeria, Mediterranean Islands, and California. The health benefits of using laurel soap for skin and hair, according to Ohmymag and Healthline were shown. The primary property of Laurel soap (Aleppo soap as it is at Ohmymag and Healthline) is to deeply moisturize the skin [1,2]. Recommended by most dermatologists, thanks to

© 2021, IJCRCPS. All Rights Reserved

its natural composition, Aleppo soap is suitable for all skin types, whether healthy or problematic. Aleppo soap can help relieve itching for those suffering from psoriasis, acne, and eczema because it will help hydrate the skin. The combination of olive oil and bay laurel oil will help your skin regain suppleness and softness, giving skin a more youthful look. It can also serve as an anti-dandruff shampoo, helping to moisturize the scalp to limit flaking. Placed on the face while allowing it to dry, it makes an excellent mask to minimize imperfections and rejuvenate tired complexions. Finally, Aleppo soap makes a perfect shaving foam because it facilitates the gliding of the razor and hydrates skin that has been subjected to razor burn. Laurel soap contributes to treating these problems through: 1- Reduces hair loss. 2- It works to give the hair a shiny and healthy appearance. 3- Moisturizing the hair. 4- Eliminates dandruff. 5- It provides the necessary nourishment to the scalp and hair follicles. 6- Improves hair breakage. 7- Helps extend hair. 8- It works to give hair density as a result of nourishing the scalp well. 9- Reduces the appearance of white hair [1-12].

The effect of ripening time of the laurel fruits (from the region of Kassab in Syria) between to December on October the chemical composition of fatty acids in laurel oil extracted from the fruits (green, brown and black) by hexane using gas chromatographic analysis after converting fatty acids to methyl esters (FAMEs) was studied. It was found that the ratios of fatty acids change with the time of growth and with the maturation of the fruits [13]. The effect of ripening time of the laurel fruits between October to December on the chemical composition of essential oils in laurel oil extracted from the fresh fruits (green, brown and black) by hexane using GC analysis was studied. The ratios of essential oils change with the time of growth and with the maturation of the fruits. Analysis by GC and GC-MS of the essential oils has allowed to identify 26 compounds representing 99.4% of the total content were directly identified after extracting laurel oil [14].

The Syrian national specifications No. 377 [15] for laurel soap, No. 139 [16] for soap and No. 2217 [17] for cosmetic soap specified the necessary conditions for each type of soap.

In the present work, determine laurel oil in laurel soap by using capillary GC analysis to detect fraud in the manufacture of laurel soap (provided that the percentage of myristic acid does not exceed 1%, will single out a new research later) was applied.

Materials and Methods

Instruments and apparatus

A Shimadzu GC-2010 gas chromatograph with capillary column (TRB-WAX 0.5 µm, 30 m ×0.32 mm, Serial: N2068586), auto injecter-AOC-20i and FID detector were used. For microwave digestion of the samples, a high performance microwave digestion apparatus MLS-1200 MEGA with EM-30 unit (Milestone GmbH) was used. An ultrasonic processor model Power sonic 405 was used to sonicine the sample solutions. The diluter pipette model DIP-1 (Shimadzu), having 100 µL sample syringe and five continuously adjustable pipettes covering a volume range from 10 to 5000 µL (model Piptman P, GILSON). Centrifuge (Centurion Scientific Ltd., Model: K2080-Manufactured in the United Kingdom) was used for the preparation of the experimental solutions. SARTORIUS TE64 electronic balance was used for weighing the samples.

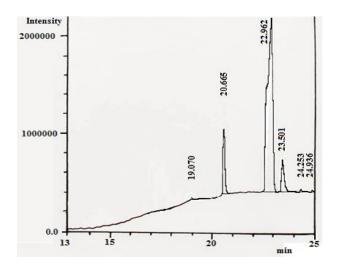
Reagents

Hexane, methanol, NaOH, KOH, CH₃COOH (extra pure) were purchased from Merck. Standard of fatty acids (FAME 16 Mix, Cat. No. 722320) was purchased from MACHEREY-NAGEL GmbH & Co. KG, Neumann-Neander-6-8, D-52355 Duren, Germany. Two Str. standards of essential oils CAN-TERP-MIX 1 & 2, which each contain 21 compounds by focus each 100 µg.mL⁻¹. Laurel oil (Lauric acid 20.017%, Myristic acid 0.542%, Palmitic acid 16.706%, Oleic acid 36.289%, Linoleic acid 23.990%, Arachidonic acid 0.885% and Linolenic acid 0.548%). Olive oil (Lauric acid 0.0%, Myristic acid 0.002%, Palmitic acid 20.660%, Oleic acid 73.590%. Linoleic acid 8.935%. Arachidonic acid 0.918% and Linolenic acid 0.630%).

Samples preparation

The fruits of the laurel were collected from Kassab area in Syria. Extract the oil with hexane [3]. Studied samples of soap were prepared according to the following: from pure olive oil, from pure laurel oil and from mixture of olive oil and laurel oil in the following proportions: 2.5%, 5.0%, 10.0%, 15.0%, 20.0% and 25.0% laurel oil. It was left in a suitable atmosphere for 36 days. When the tests were conducted on them after adding a quantity of concentrated acetic acid ranging from 0.2 to 1.1 g and heating to the melting point, and converting fatty acids to methyl esters (FAMEs). It was found that the best amount of acetic acid was 0.5 g.

Fig. 1. Gas chromatographic analysis of soap from olive oil only (Programmed column temperature 80° C for 5 min and then increase it to 230° C with increasing temperature rate 10° C/min, FID, flow rate of N₂ carrier gas 1.7 mL.min⁻¹, the injection volume 1 µL with split injection mode 1:10, injected port temperature 250° C, and temperature of FID 250°C).


Results and Discussion

Analytical procedure

Using gas chromatographic analysis for studied samples of soap after converting fatty acids to methyl esters (FAMEs) was studied. Programmed column temperature 80° C for 5 min and then increase it to 230° C with increasing temperature rate 10° C/min, FID, flow rate of N₂ carrier gas 1.7 mL.min⁻¹, the injection volume 1 µL with split injection mode 1:10, injected port temperature 250° C, and temperature of FID 250° C were applied.

The chemical composition of fatty acids in soap:

Fatty acids were determined in soap samples prepared from (Olive oil only, laurel oil only, and from the mentioned mixtures from 2.5% to 25.0% of laurel oil), see Figures 1-8 and Tables 1-8.

Name	Ret. Time, min	Concentrations %	
Lauric Acid, C12	17.472	0.000	
Myristic Acid, C14	19.070	0.001	
Palmitic Acid, C16	20.665	14.918	
Oleic Acid, C18:1	22.962	73.588	
Linoleic Acid, C18:2	Acid, C18:2 23.501		
Arachidonic Acid, C20	24.253	0.916	
Linolenic Acid, C18:3	24.936 0.628		
Total		98.984	
Saturated fatty acids, SFA	Saturated fatty acids, SFA 15.835		
Unsaturated fatty acids, USFA	83.149		

Fig. 2. Gas chromatographic analysis of soap from laurel oil only (Programmed column temperature 80°C for 5 min and then increase it to 230°C with increasing temperature rate 10°C/min, FID, flow rate of N_2 carrier gas 1.7 mL.min⁻¹, the injection volume 1 μ L with split injection mode 1:10, injected port temperature 250°C, and temperature of FID 250°C).

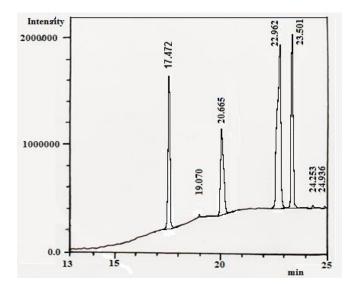


Table 2. The fatty acid components of soap from laurel oil only using GC analysis.

Name	Ret. Time, min	Concentrations%	
Lauric Acid, C12	17.472	20.008	
Myristic Acid, C14	19.070	0.549	
Palmitic Acid, C16	20.665	16.714	
Oleic Acid, C18:1	22.962	36.285	
Linoleic Acid, C18:2	23.501	23.991	
Arachidonic Acid, C20	24.253	0.880	
Linolenic Acid, C18:3	24.936 0.550		
Total	98.977		
Saturated fatty acids, SFA	y acids, SFA 38.151		
Unsaturated fatty acids, USFA	60.826		

Table 1. The fatty acid components of soap from olive oil only using GC analysis.

Fig. 3. Gas chromatographic analysis of soap contents 2.5% laurel oil (Programmed column temperature 80°C for 5 min and then increase it to 230°C with increasing temperature rate 10°C/min, FID, flow rate of N₂ carrier gas 1.7 mL.min⁻¹, the injection volume 1 μ L with split injection mode 1:10, injected port temperature 250°C, and temperature of FID 250°C).

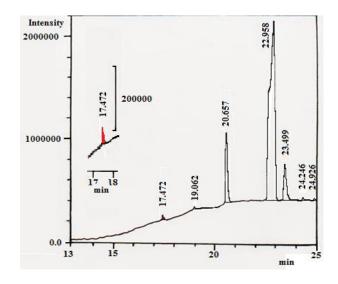
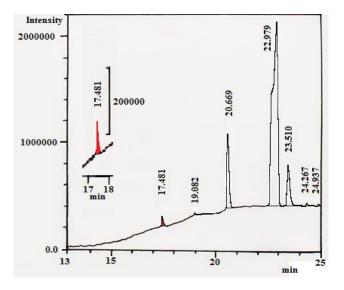



Table 3. The fatty acid components of soap contents 2.5% laurel oil using GC analysis.

Name	Ret. Time, min	Concentrations%	
Lauric Acid, C12	17.472	0.519	
Myristic Acid, C14	19.062	0.014	
Palmitic Acid, C16	20.657	14.962	
Oleic Acid, C18:1	22.958	72.655	
Linoleic Acid, C18:2	23.499	9.309	
Arachidonic Acid, C20	24.246	0.915	
Linolenic Acid, C18:3	24.926	0.626	
Total		99.000	
Saturated fatty acids, SFA	16.410		
Unsaturated fatty acids, USFA	82.590		

Fig. 4. Gas chromatographic analysis of soap contents 5.0% laurel oil (Programmed column temperature 80°C for 5 min and then increase it to 230°C with increasing temperature rate 10°C/min, FID, flow rate of N₂ carrier gas 1.7 mL.min⁻¹, the injection volume 1 μ L with split injection mode 1:10, injected port temperature 250°C, and temperature of FID 250°C).

Name	Ret. Time, min	Concentrations%		
Lauric Acid, C12	17.481	0.981		
Myristic Acid, C14	19.082	0.028		
Palmitic Acid, C16	20.669	15.007		
Oleic Acid, C18:1	C18:1 22.979 71			
Linoleic Acid, C18:2	23.510	9.685		
Arachidonic Acid, C20	24.267	0.914		
Linolenic Acid, C18:3	24.937	0.624		
Total		98.961		
Saturated fatty acids, SFA	d fatty acids, SFA 16.930			
Unsaturated fatty acids, USFA	82.031			

Table 4. The fatty acid components of soap contents 5.0% laurel oil using GC analysis.

Fig. 5. Gas chromatographic analysis of soap contents 10.0% laurel oil (Programmed column temperature 80°C for 5 min and then increase it to 230°C with increasing temperature rate 10°C/min, FID, flow rate of N₂ carrier gas 1.7 mL.min⁻¹, the injection volume 1 μ L with split injection mode 1:10, injected port temperature 250°C, and temperature of FID 250°C).

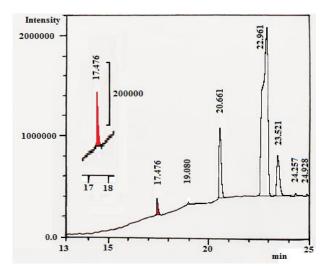


Table 5. The fatty acid components of soap contents 10.0% laurel oil using GC analysis.

Name	Ret. Time, min	Concentrations%		
Lauric Acid, C12	17.476	2.054		
Myristic Acid, C14	19.080	0.055		
Palmitic Acid, C16	20.661	15.097		
Oleic Acid, C18:1	22.961	69.857		
Linoleic Acid, C18:2	23.521	10.438		
Arachidonic Acid, C20	24.257	0.912		
Linolenic Acid, C18:3	Linolenic Acid, C18:3 24.928 0.620			
Total		99.033		
Saturated fatty acids, SFA	18.118			
Unsaturated fatty acids, USFA	80.915			

Fig. 6. Gas chromatographic analysis of soap contents 15.0% laurel oil (Programmed column temperature 80°C for 5 min and then increase it to 230°C with increasing temperature rate 10°C/min, FID, flow rate of N₂ carrier gas 1.7 mL.min⁻¹, the injection volume 1 μ L with split injection mode 1:10, injected port temperature 250°C, and temperature of FID 250°C).

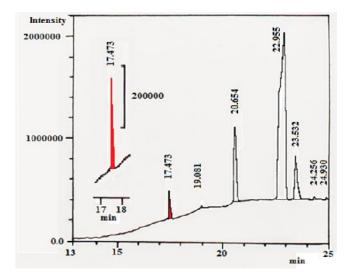
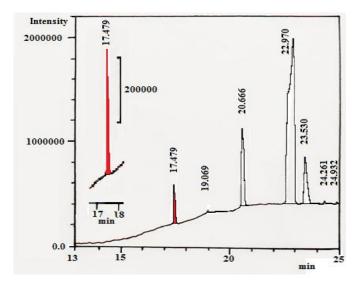



Table 6. The fatty acid components of soap contents 15.0% laurel oil using GC analysis.

Name	Ret. Time, min	Concentrations%	
Lauric Acid, C12	17.473	3.106	
Myristic Acid, C14	19.081	0.083	
Palmitic Acid, C16	20.654	15.187	
Oleic Acid, C18:1	1 22.955 6		
Linoleic Acid, C18:2	23.532	11.191	
Arachidonic Acid, C20	24.256	0.910	
Linolenic Acid, C18:3	24.930 0.616		
Total		99.085	
Saturated fatty acids, SFA	Saturated fatty acids, SFA 19.286		
Unsaturated fatty acids, USFA	79.799		

Fig. 7. Gas chromatographic analysis of soap contents 20.0% laurel oil (Programmed column temperature 80°C for 5 min and then increase it to 230°C with increasing temperature rate 10°C/min, FID, flow rate of N₂ carrier gas 1.7 mL.min⁻¹, the injection volume 1 μ L with split injection mode 1:10, injected port temperature 250°C, and temperature of FID 250°C).

© 2021, IJCRCPS. All Rights Reserved

Name	Ret. Time, min	Concentrations%		
Lauric Acid, C12	17.479	4.001		
Myristic Acid, C14	19.069	0.110		
Palmitic Acid, C16	Acid, C16 20.666			
Oleic Acid, C18:1	22.970	66.127		
Linoleic Acid, C18:2	23.530	11.944		
Arachidonic Acid, C20	24.261	0.908		
Linolenic Acid, C18:3	24.932	0.612		
Total	98.979			
Saturated fatty acids, SFA	20.296			
Unsaturated fatty acids, USFA	78.683			

Table 7. The fatty acid components of soap contents 20.0% laurel oil using GC analysis.

Fig. 8. Gas chromatographic analysis of soap contents 25.0% laurel oil (Programmed column temperature 80°C for 5 min and then increase it to 230°C with increasing temperature rate 10°C/min, FID, flow rate of N₂ carrier gas 1.7 mL.min⁻¹, the injection volume 1 μ L with split injection mode 1:10, injected port temperature 250°C, and temperature of FID 250°C).

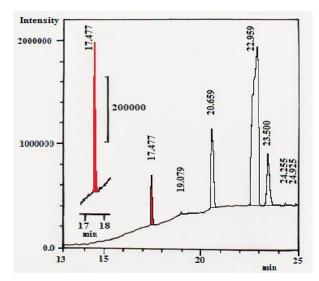
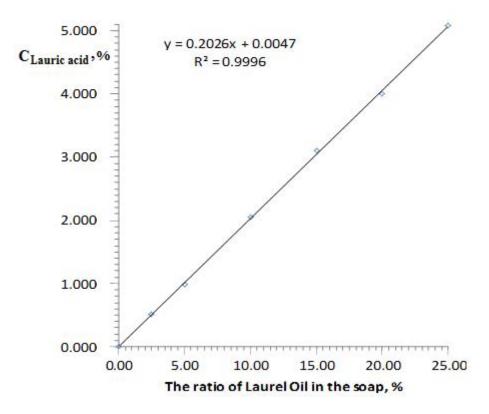


Table 8. The fatty acid components of soap contents 25.0% laurel oil using GC analysis.

Name	Ret. Time, min	Concentrations%		
Lauric Acid, C12	17.477	5.076		
Myristic Acid, C14	19.079 0.1			
Palmitic Acid, C16	id, C16 20.659 1			
Oleic Acid, C18:1	22.959	64.262		
Linoleic Acid, C18:2	23.500	12.697		
Arachidonic Acid, C20	24.255	0.907		
Linolenic Acid, C18:3	24.925 0.608			
Total		99.055		
Saturated fatty acids, SFA	21.488			
Unsaturated fatty acids, USFA	77.567			


© 2021, IJCRCPS. All Rights Reserved

Int. J. Curr. Res. Chem. Pharm. Sci. (2021). 8(6): 5-16

The previous results are summarized in Table 9; Whereas soap made from olive oil only or made from laurel oil percentage of less than 5% is considered an soap (not laurel soap); according to the Syrian national specifications No. 377 and No. 139 [3, 4]. Figure 9 showed that the calibration curves for the ratio of laurel oil in soap by gas chromatographic analysis and regression equations and correlation coefficient were as the follows: y = 0.2026x + 0.0047 (R²=0.9996), where y: concentration % of lauric acid in soap, and x: percentage of laurel oil in soap.

Table 9. The fatty acid components of soap contents laurel oil only or 0.0% to 25.0% laurel oil using gas chromatographic analysis with a detector FID.

Name	Ī, Ret.	100 %,	100 %,	100 %, The ratio of concentrations laurel oil in the soap				soap		
	Time, min	Laurel Oil	Olive Oil	2.5%	5.0%	10.0%	15.0%	20.0%	25.0%	
			Soap (A	ccording	Laurel	Soap (Acc	cording to	S.N.S. N ^o	" 377"	
			to S.N.			for	Laurel So	ap)		
			139)")						
Lauric Acid, C12	17.472	20.008	0.000	0.519	0.981	2.054	3.106	4.001	5.076	
Myristic Acid, C14	19.062	0.549	0.001	0.014	0.028	0.056	0.084	0.110	0.138	
Palmitic Acid, C16	20.657	16.714	14.918	14.962	15.007	15.096	15.187	15.277	15.367	
Oleic Acid, C18:1	22.958	36.285	73.588	72.655	71.722	69.857	67.992	66.127	64.262	
Linoleic Acid, C18:2	23.499	23.991	8.933	9.309	9.685	10.438	11.191	11.944	12.697	
Arachidonic Acid, C20	24.255	0.880	0.916	0.915	0.914	0.912	0.910	0.908	0.907	
Linolenic Acid, C18:3	24.925	0.550	0.628	0.626	0.624	0.620	0.616	0.612	0.608	
Total		98.977	98.984	99.000	98.961	99.033	99.085	98.979	99.055	
Saturated fatt	Saturated fatty acids,		15.835	16.410	16.930	18.118	19.286	20.296	21.488	
SFA										
Unsaturated fat USFA	tty acids,	60.826	83.149	82.590	82.031	80.915	79.799	78.683	77.567	

Fig. 9. Calibration curve of the proportion of laurel oil in the oil extracted from laurel soap, depending on the percentage of lauric acid in it by GC analysis (Programmed column temperature 80° C for 5 min and then increase it to 230° C with increasing temperature rate 10° C/min, FID, flow rate of N₂ carrier gas 1.7 mL.min⁻¹, the injection volume 1 µL with split injection mode 1:10, injected port temperature 250°C, and temperature of FID 250°C).

Based on the previous results, samples of laurel soap taken from the local market in Aleppo -Syria were identified and classified according to the Syrian standard specifications (S.N.S.) and the degree of their quality and validity, as shown in Table 10.

Int. J. Curr. Res. Chem. Pharm. Sci. (2021). 8(6): 5-16

Table 10. Classification of Laurel soap taken from the local market in Aleppo - Syria classified according to the Syrian standard specifications (S.N.S.) and regression equation: y=0.2026x+0.0047, where y- Concentration% of lauric acid in soap, x- Laurel oil in soap (Provided that myristic acid is does not exceed 1%).

Samples	Myristic acid	Y, Concentrations % of Lauric acid in soap	X, Laurel oil in soap	No of S.N.S.	Classification of soap	Quality of soap	Validity as Laurel soap
А	0.026%	1.04	5.11%	377	Laurel soap	Second degree	Valid
В	0.225%	8.20	40.45%	377	Laurel soap	First degree	Valid
С	0.017%	0.62	3.04%	139	Soap	-	Invalid
D	0.008%	0.28	1.36%	139	Soap	_	Invalid
Е	0.020%	0.36	1.75%	139	Soap	-	Invalid
F	0.094%	3.41	16.81%	377	Laurel soap	First degree	Valid
G	2.531%	6.13	-	2217	Cosmetic	-	Invalid
					soap		
H	0.140%	5.06	24.95%	377	Laurel soap	First degree	Valid
Ι	0.030%	1.24	6.10%	377	Laurel soap	Second degree	Valid
J	0.195%	7.04	34.73%	377	Laurel soap	First degree	Valid
K	2.872%	7.16	-	2217	Cosmetic soap	-	Invalid
L	2.043%	5.42	-	2217	Cosmetic soap	-	Invalid
М	0.192%	7.01	34.58%	377	Laurel soap	First degree	Valid
N	0.116%	3.96	19.52%	377	Laurel soap	First degree	Valid
0	0.013%	0.41	2.00%	139	Soap	-	Invalid
Р	0.037%	1.31	6.44%	377	Laurel soap	Second degree	Valid
Q	3.100%	8.00	-	2217	Cosmetic soap	-	Invalid

Conclusion

Determine laurel oil in laurel soap by using capillary gas chromatographic analysis to detect fraud in the manufacture of laurel soap, which is widely spread in Syria, especially in the city of Aleppo, and is exported to various parts of the world was applied. Assuming that the minimum amount of lauric acid in laurel oil is 20% provided that the percentage of myristic acid does not exceed 1% (Will single out a new research later). Regression equations and correlation coefficient were as the follows: y = 0.2026x + 0.0047 (R²=0.9996), where y: percentage of lauric acid in fatty acid excreted from soap, and x: percentage of laurel oil in soap.

References

- 1- HEALTHLINE- U.S. Department of Health and Human Servis (Public Health Service National Institutes of Health).
- 2- Ohmymag EN. Community (http://www.ohmymag.co.uk/).
- 3- Ayano lu F., Kaya D.A., Koçer O., 2018.
 "Promising bay laurel (*Laurus nobilis* L.) genotypes for fruit production", Int. J. Chem. Technol. 2 (2): 161-167.
- 4- Oussama M., Manal D., Ghenwa I., Zein al-abideen D., Ali I., Kamel S. E., 2018.
 "Review Study on the Physiological Properties and Chemical Composition of the *Laurus nobilis*", The Pharmaceutical and Chemical Journal. 5(1):225-231.

© 2021, IJCRCPS. All Rights Reserved

- 5- Said C.M., Hussein K., 2014. "Determination of the chemical and genetic differences of *Laurus* collected from three different geographic and climatic areas in Lebanon", European Sci. J. 2:412-419.
- 6- Derwich H., Benziane Z., Boukir A., 2009.
 "Chemical composition and antibacterial activity of leaves essential oil of *Laurus nobilis* from Morocco", Australian J. of Basic and Applied Sci. 3(4):3818-3824.
- 7- Ramadan A.A., Antakli S., Sharaf-Aldin I., 2009. "Determination of some fatty acids in laurel oil extractive from wild fruit and cultivated laurus nobilis using gas chromatographic analysis ", Res. J. Aleppo Univ. 64: 227-240.
- 8- Marzouki H., Piras A., Marongiu B., Rosa A., Dessi MA., 2008. "Extraction and separation of volatile and fixed oils from berries of *Laurus nobilis* L. by supercritical CO₂", Molecules. 13:1702-1711.
- 9- Beis S.H., Dunford N.H., 2006. "Supercritical fluid extraction of daphne (*Laurus nobilis* L.) seed oil", Journal of the American Oil Chemists' Society. 83(11); 953-957.
- 10- Paula C. Castilho., Maria do Céu Costa., Ana Rodrigues., Ana Partidário., 2005.

"Characterization of Laurel Fruit Oil from Madeira Island, Portugal", JAOCS. 82(12): 863-868.

- 11- Kumar S., Singh J., Sharma A., Bay Leaves.
 In: Peter K.V., Editor., 2003. "Handbook of Herbs and Spices", Vol. I. Abington Woodhead Publishing Limited. pp 52-61.
- 12 Garg S.N., Siddiqui M.S., Agarwal S.K., 1992. "New fatty acid esters and hydroxyl ketones from fruits of *Laurus nobilis*", J. of Natural Products. 55(9):1315-1319.
- 13- Ramadan A.A., Mandil H., Anadani L., 2019. "Effect of Ripening Time of Fruits in the Chemical Composition (%) of Fatty Acids in Syrian Laurel Oil". Int. J. Curr. Res. Chem. Pharm. Sci. 6(7): 26-34.
- 14- Ramadan A.A., Mandil H., Anadani L., 2020. "Effect of Ripening Time of Fruits in the Chemical Composition (%) of Essential Oils in Syrian Laurel Oil". Int. J. Curr. Res. Chem. Pharm. Sci. 7(4): 30-49.
- 15- Syrian national specifications No. 377 for Laurel soap.
- 16- Syrian national specifications No. 139 for soap.
- 17- Syrian national specifications No. 2217 for cosmetic soap.

How to cite this article:

Abdul Aziz Ramadan, Hasna Mandil, Lina Anadani. (2021). Determination of Percentage of Laurel Oil in Laurel Soap Using Capillary Gas Chromatographic Analysis. Int. J. Curr. Res. Chem. Pharm. Sci. 8(6): 5-16.

DOI: http://dx.doi.org/10.22192/ijcrcps.2021.08.06.002